FREE BOOKS

Author's List




PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  
the ultimate or maximum strength of the plates from 65,000 to 45,000 lbs. per square inch of section, and riveting the plates was found to occasion a diminution in their strength to the extent of one third. These results, however, are not precisely the same as those obtained by Mr. Fairbairn. 300. _Q._--What were the results obtained by him? _A._--He found that boiler plate bore a tensile strain of 23 tons per square inch before rupture, which was reduced to 16 tons per square inch when joined together by a double row of rivets, and 13 tons, or about 30,000, when joined together by a single row of rivets. A circular boiler, therefore, with the ends of its plates double riveted, will bear at the utmost about 36,000 lbs. per square inch of section, or about 12,000 lbs. per square inch of section without permanent derangement of structure. 301. _Q._--What pressure do cylindrical boilers sustain in practice? _A._--In some locomotive boilers, which are worked with a pressure of 80 lbs. upon the square inch, the thickness of the plates is only 5/16ths of an inch, while the barrel of the boiler is 39 inches in diameter. It will require a length of 3.2 inches of the boiler when the plates are 5/16ths thick to make up a sectional area of one square inch, and the separating force will be 39 times 3.2 multiplied by 80, which makes the separating force 9,984 lbs., sustained by two square inches of sectional area--one on each side; or the strain is 4,992 lbs. per square inch of sectional area, which is quite as great strain as is advisable. The accession of strength derived from the boiler ends is not here taken into account, but neither is the weakening effect counted that is caused by the rivet holes. Some locomotives of 4 feet diameter of barrel and of 3/8ths iron have been worked to as high a pressure as 200 lbs. on the inch; but such feats of daring are neither to be imitated nor commended. 302._Q._--Can you give a rule for the proper thickness of cylindrical boilers? _A._--The thickness proper for cylindrical boilers of wrought iron, exposed to an internal pressure, may be found by the following rule:--multiply 2.54 times the internal diameter of the cylinder in inches by the greatest pressure within the cylinder per circular inch, and divide by 17,800; the result is the thickness in inches. If we apply this rule to the example of the locomotive boiler just given, we have 39 x 2.54 x 62.832 (the pressure per circul
PREV.   NEXT  
|<   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139  
140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   >>   >|  



Top keywords:

square

 

pressure

 

boiler

 

inches

 
plates
 
boilers
 

thickness

 

diameter

 

sectional

 

strain


strength

 

cylindrical

 

section

 

locomotive

 

worked

 

circular

 

proper

 
internal
 

separating

 

barrel


cylinder
 
joined
 

obtained

 

results

 

rivets

 

double

 

diminution

 
daring
 

commended

 

imitated


extent

 
account
 

weakening

 
effect
 

locomotives

 

counted

 
caused
 
maximum
 

result

 

circul


ultimate

 

divide

 

wrought

 

exposed

 

riveting

 

single

 
occasion
 

greatest

 
multiply
 

derived