FREE BOOKS

Author's List




PREV.   NEXT  
|<   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154  
155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   >>   >|  
may be a vacant space between the piston and the water; and at the return stroke the momentum of the water in the pipe expends itself in giving a reverse motion to the column of water approaching the pump. Messrs. Kirchweger and Prusman, of Hanover, have investigated this subject by applying a revolving cock at the end of a pipe leading from an elevated cistern containing water, and the water escaped at every revolution of the cock in the same manner as if a pump were drawing it. With a column of water of 17 feet, they found that at 80 revolutions of the cock per minute, the water delivered per minute by the cock was 9.45 gallons; but with 140 revolutions of the cock per minute, the water delivered per minute by the cock was only 5.42 gallons. They subsequently applied an air vessel to the pipe beside the cock, when the discharge rose to 12.9 gallons per minute with 80 revolutions, and 18.28 gallons with 140 revolutions. Air vessels should therefore be applied to the suction side of fast moving pumps, and this is now done with good results. 339. _Q._--What are the usual dimensions of the cold water pump of land engines? _A._--If to condense a cubic inch of water raised into steam 28.9 cubic inches of condensing water are required, then the cold water pump ought to be 28.9 times larger than the feed pump, supposing that its losses were equally great. The feed pump, however, is made sufficiently large to compensate for leaks in the boiler and loss of steam through the safety valve, so that it will be sufficient if the cold water pump be 24 times larger than the feed pump. This ratio is preserved by the following rule:-- multiply the capacity of the cylinder in cubic inches by the total pressure of the steam per square inch, or the pressure on the safety valve plus 15, and divide the product by 200. The quotient is the proper capacity of the cold water pump in cubic inches when the engine is double acting, and the pump single acting. FLY WHEEL. 340. _Q._--By what considerations do you determine the dimensions of the fly wheel of an engine? _A._--By a reference to the power generated, each half stroke of the engine, and the number of half strokes that are necessary to give to the fly wheel its standard velocity, supposing the whole power devoted to that object. In practice the power resident in the fly varies from 2-1/2 to 6 times that generated each half stroke; and if the weight of the wheel be equal to the
PREV.   NEXT  
|<   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154  
155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   >>   >|  



Top keywords:

minute

 

gallons

 
revolutions
 

stroke

 
inches
 

engine

 

acting

 

delivered

 

supposing

 

dimensions


applied

 
pressure
 

capacity

 

safety

 
generated
 
larger
 
column
 

losses

 

preserved

 
equally

sufficient
 

boiler

 

sufficiently

 

weight

 
compensate
 
product
 

determine

 

reference

 

considerations

 

practice


number
 

velocity

 

object

 

standard

 

strokes

 

single

 

square

 

multiply

 

cylinder

 
divide

devoted

 
resident
 
proper
 

double

 

varies

 
quotient
 

cistern

 
escaped
 

elevated

 
leading