FREE BOOKS

Author's List




PREV.   NEXT  
|<   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155  
156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   >>   >|  
pressure on the piston, its velocity must be such as it would acquire by falling through a height equal to from 2-1/2 to 6 times the stroke, according to the purpose for which the engine is intended. If a very equable motion is required, a heavier or swifter fly wheel must be employed. 341. _Q._--What is Boulton and Watt's rule for fly wheels? _A._--Their rule is one which under any given circumstances fixes the sectional area of the fly wheel rim, and it is as follows:--multiply 44,000 times the square of the diameter of the cylinder in inches by the length of the stroke in feet, and divide this product by the product of the square of the number of revolutions of the fly wheel per minute, multiplied by the cube of its diameter in feet. The quotient is the area of section of the fly wheel rim in square inches. STRENGTHS OF LAND ENGINES. 342. _Q._--Can you give a rule for telling the proper thickness of the cylinders of steam engines? _A._--In low pressure engines the thickness of metal of the cylinder, in engines of a medium size, should be about 1/40th of the diameter of the cylinder, which, with a pressure of steam of 20 lbs. above the atmosphere, will occasion a strain of only 400 Lbs. per square inch of section of the metal; the thickness of the metal of the trunnion bearings of oscillating engines should be 1/32d of the diameter of the cylinder, and the breadth of the bearing should be about half its diameter. In high pressure engines the thickness of the cylinder should be about 1/16th its diameter, which, with a pressure of steam of 80 lbs. upon the square inch, will occasion a strain of 640 lbs. upon the square inch of section of the metal; and the thickness of the metal of the trunnion bearings of high pressure oscillating engines should be 1/13th of the diameter of the cylinder. The strength, however, is not the sole consideration in proportioning cylinders, for they must be made of a certain thickness, however small the pressure is within them, that they may not be too fragile, and will stand boring. While, also, an engine of 40 inches diameter would be about one inch thick, the thickness would not be quite two inches in an 80 inch cylinder. In fact there will be a small constant added to the thickness for all diameters, which will be relatively larger the smaller the cylinders become. In the cylinders of Penn's 12 horse power engines, the diameter of cylinder being 21-1/2 inches, the thickness
PREV.   NEXT  
|<   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155  
156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   >>   >|  



Top keywords:

thickness

 

diameter

 

cylinder

 

pressure

 
engines
 
square
 

inches

 

cylinders

 

section

 

engine


stroke

 

occasion

 

trunnion

 

strain

 

product

 

oscillating

 

bearings

 
atmosphere
 

bearing

 

breadth


diameters
 
constant
 

larger

 

smaller

 

proportioning

 

consideration

 

boring

 
fragile
 

strength

 

quotient


swifter

 
heavier
 

required

 
equable
 

motion

 

employed

 
wheels
 
Boulton
 

acquire

 

falling


velocity

 

piston

 

height

 

purpose

 

intended

 

ENGINES

 
STRENGTHS
 

medium

 
telling
 

proper