FREE BOOKS

Author's List




PREV.   NEXT  
|<   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159  
160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   >>   >|  
revolutions to be made per minute, and reserve the product for a divisor; multiply the number of _actual_ horses power to be transmitted by 240, and divide the product by the above divisor, which will give the strength. If the pitch be given to find the breadth, divide the above strength by the square of the pitch in inches; or if the breadth be given, then to find the pitch divide the strength by the breadth in inches, and extract the square root of the quotient, which is the proper pitch in inches. The length of the teeth is usually about 5/8ths of the pitch. Pinions to work satisfactorily should not have less than 30 or 40 teeth, and where the speed exceeds 220 feet in the minute, the teeth of the larger wheel should be of wood, made a little thicker, to keep the strength unimpaired. 356. _Q._--What was Mr. Watt's rule for the pitch of wheels? _A._--Multiply five times the diameter of the larger wheel by the diameter of the smaller, and extract the fourth root of the product, which is the pitch. STRENGTH OF MARINE AND LOCOMOTIVE ENGINES. 357. _Q._--Cannot you give some rules of strength which will be applicable whatever pressure may be employed? _A._--In the rules already given, the effective pressure may be reckoned at from 18 to 20 lbs. upon every square inch of the piston, as is usual in land engines; and if the pressure upon every square inch of the piston be made twice greater, the dimensions must just be those proper for an engine of twice the area of piston. It will not be difficult, however, to introduce the pressure into the rules as an element of the computation, whereby the result will be applicable both to high and low pressure engines. 358. _Q._--Will you apply this mode of computation to a marine engine, and first find the diameter of the piston rod? _A._--The diameter of the piston rod may be found by multiplying the diameter of the cylinder in inches, by the square root of the pressure on the piston in lbs. per square inch, and dividing by 50, which makes the strain 1/7th of the elastic force. 359. _Q._--What will be the rule for the connecting rod, supposing it to be of malleable iron? _A._--The diameter of the connecting rod at the ends, may be found by multiplying 0.019 times the square root of the pressure on the piston in lbs. per square inch by the diameter of the cylinder in inches; and the diameter of the connecting rod in the middle may be found by the following rule:
PREV.   NEXT  
|<   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159  
160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   >>   >|  



Top keywords:

diameter

 

square

 

pressure

 

piston

 
strength
 
inches
 

connecting

 

breadth

 

product

 

divide


engine

 

computation

 

multiplying

 

engines

 

cylinder

 

larger

 

applicable

 
extract
 

proper

 

minute


divisor
 
result
 

actual

 

element

 

introduce

 

dimensions

 

greater

 
transmitted
 

difficult

 

horses


marine

 
supposing
 

revolutions

 
malleable
 

middle

 

elastic

 
reserve
 
multiply
 

number

 

dividing


strain

 

Multiply

 

wheels

 

Pinions

 

MARINE

 

STRENGTH

 
fourth
 

smaller

 
thicker
 

unimpaired