FREE BOOKS

Author's List




PREV.   NEXT  
|<   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158  
159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   >>   >|  
ere so proportioned that the thickness was 1/58th of the circumference, and the depth 1/375. The side of the beam, supposing it square, was found by multiplying the diameter of the cylinder by the length of the stroke, and extracting the cube root of the quotient, which will be the depth or thickness of the beam. This rule allows a beam 16 feet long to bend 1/8th of an inch, and a beam 32 feet long to bend 1/4 of an inch. For cast iron beams the square of the diameter of the cylinder, multiplied by the length between the centres, is equal to the square of the depth, multiplied by the thickness. 352. _Q._--What law does the strength of beams and shafts follow? _A._--In the case of beams subjected to a breaking force, the strength with any given cohesion of the material will be proportional to the breadth, multiplied by the square of the depth; and in the case of revolving shafts exposed to a twisting strain, the strength with any given cohesive power of the material will be as the cube of the diameter. 353. _Q._--How is the strength of a cast iron shaft to resist torsion determined? _A._--Experiments upon the force requisite to twist off cast iron necks show that if the cube of the diameter of neck in inches be multiplied by 880, the product will be the force of torsion which will twist them off when acting at 6 inches radius; on this fact the following rule is founded: To find the diameter of a cast iron fly wheel shaft:--multiply the square of the diameter of the cylinder in inches, by the length of the crank in inches, and extract the cube root of the product, which multiply by 0.3025, and the result will be the proper diameter of the shaft in inches at the smallest part, when of cast iron. 354. _Q._--What was Mr. Watt's rule for the necks of his crank shafts? _A._--Taking the pressure on the piston at 12 lbs. pressure on the square inch, and supposing this force to be applied at one foot radius, divide the total pressure of the piston reduced to 1 foot of radius by 31.4, and extract the cube root of the quotient, which is the diameter of the shaft: or extract the cube root of 13.7 times the number of cubic feet of steam required to make one revolution, which is also the diameter of the shaft. 355. _Q._--Can you give any rule for the strength of the teeth of wheels? _A._--To find the proper dimensions for the teeth of a cast iron wheel:-- multiply the diameter of the pitch circle in feet by the number of
PREV.   NEXT  
|<   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158  
159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   >>   >|  



Top keywords:

diameter

 

square

 
inches
 

strength

 

multiplied

 
radius
 

thickness

 

shafts

 

multiply

 

length


cylinder

 

pressure

 
extract
 

material

 
proper
 
piston
 
torsion
 

number

 

product

 

supposing


quotient

 

smallest

 
result
 

founded

 

revolution

 

required

 
circle
 

dimensions

 

wheels

 

Taking


applied

 

reduced

 

divide

 

exposed

 

centres

 

extracting

 

stroke

 
circumference
 

proportioned

 

multiplying


follow

 

Experiments

 
determined
 
resist
 

requisite

 

acting

 

proportional

 
breadth
 

cohesion

 

breaking