FREE BOOKS

Author's List




PREV.   NEXT  
|<   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137  
138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   >>   >|  
ea of water level, or an insufficient width between the flues for the free ascent of the steam and the descent of the superincumbent water, the evil may be abated by the addition of circulating pipes in some part of the boiler, which will allow the water to descend freely to the place from whence the steam rises, the width of the water spaces being virtually increased by restricting their function to the transmission of a current of steam and water to the surface. It is desirable to arrange the heating surface in such a way that the feed water entering the boiler at its lowest point is heated gradually as it ascends, until toward the superior part of the flues it is raised gradually into steam; but in all cases there will be currents in the boiler for which it is proper to provide. The steam pipe proceeding to the engine should obviously be attached to the highest point of the steam chest, in boilers of every construction. 297. _Q._--Having now stated the proportions proper to be adopted for evaporating any given quantity of water in steam boilers, will you proceed to show how you would proportion a boiler to do a given amount of work? say a locomotive boiler which will propel a train of 100 tons weight at a speed of 50 miles an hour. _A._--According to experiments on the resistance of railway trains at various rates of speed, made by Mr. Gooch, of the Great Western Railway, it appears that a train weighing, with locomotive, tender, and carriages, about 100 tons, experiences, at a speed of 50 miles an hour, a resistance of about 3,000 lbs., or about 30 lbs. per ton; which resistance includes the resistance of the engine as well as that of the train. This, therefore, is the force which must be imparted at the circumference of the driving wheels, except that small part intercepted by the engine itself, and the force exerted by the pistons must be greater than that at the circumference of the driving wheel, in the proportion of their slower motion, or in the proportion of the circumference of the driving wheel to the length of a double stroke of the engine. If the diameter of the driving wheel be 5-1/2 feet, its circumference will be 17.278 feet, and if the length of the stroke be 18 inches, the length of a double stroke will be 3 feet. The pressure on the pistons must therefore be greater than the traction at the circumference of the driving wheel, in the proportion of 17.278 to 3, or, in other words, the mean pressure
PREV.   NEXT  
|<   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137  
138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   >>   >|  



Top keywords:

boiler

 

circumference

 
driving
 

engine

 

resistance

 
proportion
 

stroke

 

length

 

boilers

 

locomotive


proper

 

gradually

 
surface
 

pressure

 
double
 
pistons
 
greater
 

Western

 

experiments

 

According


trains

 

appears

 
railway
 

weight

 

Railway

 

weighing

 
propel
 

imparted

 

diameter

 

motion


exerted

 

slower

 

traction

 

inches

 

intercepted

 

experiences

 

tender

 
carriages
 

includes

 

wheels


increased

 

restricting

 
function
 
virtually
 

spaces

 

transmission

 

current

 
entering
 

heating

 

desirable