FREE BOOKS

Author's List




PREV.   NEXT  
|<   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182  
183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   >>   >|  
he steam chests, connecting the several boilers together. The spindles of these valves should project through stuffing boxes in the covers of the valve chests, and they should be balanced by a weighted lever, and kept in continual action by the steam. If the valves be lifted up, and be suffered to remain up, as is the usual practice, they will become fixed by corrosion in that position, and it will be impossible after some time to shut them on an emergency. These valves should always be easily accessible from the engine room; and it ought not to be necessary for the coal boxes to be empty to gain access to them. 406. _Q._--Should each boiler have at least one safety valve for itself? _A._--Yes; it would be quite unsafe without this provision, as the stop valve might possibly jam. Sometimes valves jam from a distortion in the shape of the boiler when a considerable pressure is put upon it. 407. _Q._--How is the admission of the water into the boiler regulated? _A._--The admission of feed water into the boiler is regulated by hand by the engineer by means of cocks, and sometimes by spindle valves raised and lowered by a screw. Cocks appear to be the preferable expedient, as they are less liable to accident or derangement than screw valves, and in modern steam vessels they are generally employed. 408. _Q._--At what point of the boiler is the feed introduced? _A._--The feed water is usually conducted from the feed cock to a point near the bottom of the boiler by means of an internal pipe, the object of this arrangement being to prevent the rising steam from being condensed by the entering water. By being introduced near the bottom of the boiler, the water comes into contact in the first place with the bottoms of the furnaces and flues, and extracts heat from them which could not be extracted by water of a higher temperature, whereby a saving of fuel is accomplished. In some cases the feed water is introduced into a casing around the chimney, from whence it descends into the boiler. This plan appears to be an expedient one when the boiler is short of heating surface, and more than a usual quantity of heat ascends the chimney; but in well proportioned boilers a water casing round the chimney is superfluous. When a water casing is used the boiler is generally fed by a head of water, the feed water being forced up into a small tank, from whence it descends into the boiler by the force of gravity, while the surplus run
PREV.   NEXT  
|<   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182  
183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   >>   >|  



Top keywords:

boiler

 

valves

 
chimney
 

casing

 
introduced
 

bottom

 

descends

 

chests

 

expedient

 

boilers


admission

 
regulated
 

generally

 

prevent

 
rising
 
condensed
 
entering
 

contact

 

employed

 
arrangement

modern
 

derangement

 

conducted

 

internal

 
accident
 
object
 

vessels

 

saving

 

proportioned

 

superfluous


surface
 

quantity

 

ascends

 

gravity

 

surplus

 

forced

 

heating

 

extracted

 

higher

 
extracts

bottoms

 
furnaces
 
temperature
 

appears

 

liable

 
accomplished
 

position

 
impossible
 

corrosion

 
practice