FREE BOOKS

Author's List




PREV.   NEXT  
|<   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109  
110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   >>   >|  
r each, square foot of fire grate, which, with the proportion of heating surface already mentioned, leaves 5 square feet of heating surface to evaporate a cubic foot of water in the hour. This is only about half the amount of surface usual in land and marine boilers per cubic foot evaporated, and its small amount is due altogether to the high temperature of the furnace, which, by the rapidity of transmission it causes, is tantamount to an additional amount of heating surface. 232. _Q._--You have stated that the steam and vacuum gauges are generally glass tubes, up which mercury is forced by the steam or sucked by the vacuum? _A._--Vacuum gauges are very often of this construction, but steam gauges more frequently consist of a small iron tube, bent like the letter U, and into which mercury is poured. The one end of this tube communicates with the boiler, and the other end with the atmosphere; and when the pressure of the steam rises in the boiler, the mercury is forced down in the leg communicating with the boiler and rises in the other leg, and the difference of level in the legs denotes the pressure of the steam. In this gauge a rise of the mercury one inch in the one leg involves a difference of the level between the two legs of two inches, and an inch of rise is, therefore, equivalent to two inches of mercury, or a pound of pressure. A small float of wood is placed in the open leg to show the rise or fall of the mercury, and this leg is surmounted by a brass scale, graduated in inches, to the marks of which the float points. 233. _Q._--What other kinds of steam and vacuum gauges are there? _A._--There are many other kinds; but probably Bourdon's gauges are now in more extended use than, any other, and their operation has been found to be satisfactory in practice. The principle of their action may be explained to be, that a thin elliptical metal tube, if bent into a ring, will seek to coil or uncoil itself if subjected to external or internal pressure, and to an extent proportional to the pressure applied. The end of the tube is sharpened into an index, and moves to an extent corresponding to the pressure applied to the tube; but in the more recent forms of this apparatus, a dial and a hand, like those of a clock, are employed, and the hand is moved round by a toothed sector connected to the tube, and which sector acts on a pinion attached to the hand. Mr. Shank, of Paisley, has lately introduced a form of stea
PREV.   NEXT  
|<   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109  
110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   >>   >|  



Top keywords:

mercury

 

pressure

 
gauges
 

surface

 
vacuum
 

boiler

 

amount

 

inches

 

heating

 

extent


forced

 
applied
 

difference

 

sector

 
square
 
action
 
principle
 

satisfactory

 

proportion

 
explained

practice
 

elliptical

 

Bourdon

 

leaves

 
mentioned
 
operation
 

extended

 

uncoil

 

subjected

 

connected


toothed
 

pinion

 

attached

 

introduced

 

Paisley

 

employed

 

proportional

 

sharpened

 

internal

 
external

apparatus

 
recent
 
consist
 

altogether

 

frequently

 
construction
 

temperature

 
boilers
 

marine

 
poured