FREE BOOKS

Author's List




PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  
n-arrests, slightly twisted by the impact of the weights, the beam being thereby virtually lengthened or shortened. Lifting the beam restores the proper alignment. The beam should never be set in motion by lowering it forcibly upon the knife-edges, nor by touching the pans, but rather by lifting the rider (unless the balance be provided with some of the newer devices for the purpose), and the swing should be arrested only when the needle approaches zero on the scale, otherwise the knife-edges become dull. For the same reason the beam should never be left upon its knife-edges, nor should weights be removed from or placed on the pans without supporting the beam, except in the case of the small fractional weights. When the process of weighing has been completed, the weight should be recorded in the notebook by first noting the vacant spaces in the weight-box, and then checking the weight by again noting the weights as they are removed from the pan. This practice will often detect and avoid errors. It is obvious that the weights should always be returned to their proper places in the box, and be handled only with pincers. It should be borne in mind that if the mechanism of a balance is deranged or if any substance is spilled upon the pans or in the balance case, the damage should be reported at once. In many instances serious harm can be averted by prompt action when delay might ruin the balance. Samples for analysis are commonly weighed in small tubes with cork stoppers. Since the stoppers are likely to change in weight from the varying amounts of moisture absorbed from the atmosphere, it is necessary to confirm the recorded weight of a tube which has been unused for some time before weighing out a new portion of substance from it. WEIGHTS The sets of weights commonly used in analytical chemistry range from 20 grams to 5 milligrams. The weights from 20 grams to 1 gram are usually of brass, lacquered or gold plated. The fractional weights are of German silver, gold, platinum or aluminium. The rider is of platinum or aluminium wire. The sets of weights purchased from reputable dealers are usually sufficiently accurate for analytical work. It is not necessary that such a set should be strictly exact in comparison with the absolute standard of weight, provided they are relatively correct among themselves, and provided the same set of weights is used in all weighings made during a given analysis. The analyst
PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  



Top keywords:

weights

 
weight
 

balance

 
provided
 

removed

 

stoppers

 

fractional

 

substance

 

noting

 

analysis


analytical

 

weighing

 
commonly
 

recorded

 

aluminium

 

platinum

 
proper
 

change

 
absorbed
 

atmosphere


standard
 

moisture

 

amounts

 

varying

 

correct

 

weighings

 

prompt

 

action

 

averted

 

analyst


confirm

 

weighed

 

Samples

 
purchased
 
reputable
 

dealers

 

chemistry

 
milligrams
 

plated

 

German


lacquered

 

instances

 

sufficiently

 

accurate

 

comparison

 
silver
 

unused

 
absolute
 

portion

 

strictly