FREE BOOKS

Author's List




PREV.   NEXT  
|<   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62  
63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   >>   >|  
ither of which before use should, unless they are dry on the inside, be rinsed out with at least two small portions of the soda ash solution to displace any water. If a flask is used, fill it to the graduation with the soda ash solution and remove any liquid from the neck above the graduation with filter paper. Empty it into a beaker, and wash out the small flask, unless it is graduated for !delivery!, using small quantities of water, which are added to the liquid in the beaker. A second 50 cc. portion from the main solution should be measured off into a second beaker. Dilute the solutions in each beaker to 100 cc., add two drops of a solution of methyl orange (Note 1) and titrate for the alkali with the standard hydrochloric acid solution, using the alkali solution to complete the titration as already prescribed. From the volumes of acid and alkali employed, corrected for burette errors and temperature changes, and the data derived from the standardization, calculate the percentage of alkali present, assuming it all to be present as sodium carbonate (Note 2). [Note 1: The hydrochloric acid sets free carbonic acid which is unstable and breaks down into water and carbon dioxide, most of which escapes from the solution. Carbonic acid is a weak acid and, as such, does not yield a sufficient concentration of H^{+} ions to cause the indicator to change to a pink (see page 32). The chemical changes involved may be summarized as follows: 2H^{+}, 2Cl^{-} + 2Na^{+}, CO_{3}^{--} --> 2Na^{+}, 2Cl^{-} + [H_{2}CO_{3}] --> H_{2}O + CO_{2}] [Note 2: A determination of the alkali present as hydroxide in soda ash may be determined by precipitating the carbonate by the addition of barium chloride, removing the barium carbonate by filtration, and titrating the alkali in the filtrate. The caustic alkali may also be determined by first using phenolphthalein as an indicator, which will show by its change from pink to colorless the point at which the caustic alkali has been neutralized and the carbonate has been converted to bicarbonate, and then adding methyl orange and completing the titration. The amount of acid necessary to change the methyl orange to pink is a measure of one half of the carbonate present. The results of the double titration furnish the data necessary for the determination of the caustic alkali and of the carbonate in the sample.] DETERMINATION OF THE ACID STRENGTH OF OXALIC ACID PROCEDURE.--We
PREV.   NEXT  
|<   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62  
63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   >>   >|  



Top keywords:

alkali

 
solution
 

carbonate

 
beaker
 

present

 

methyl

 

change

 

caustic

 

orange

 

titration


barium

 

determination

 
determined
 

hydrochloric

 

indicator

 

graduation

 
liquid
 

DETERMINATION

 
PROCEDURE
 

sufficient


concentration
 

sample

 

furnish

 

STRENGTH

 

involved

 

chemical

 

summarized

 

OXALIC

 

precipitating

 

phenolphthalein


colorless

 

bicarbonate

 

converted

 
adding
 
filtrate
 

chloride

 

results

 
addition
 

double

 

neutralized


removing

 

amount

 

completing

 

titrating

 

measure

 
filtration
 

hydroxide

 
derived
 

delivery

 

quantities