FREE BOOKS

Author's List




PREV.   NEXT  
|<   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50  
51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   >>   >|  
enth-normal solutions are employed in most analyses (except in the case of the less soluble barium hydroxide). Solutions of the latter strength yield more accurate results when small percentages of acid or alkali are to be determined. INDICATORS It has already been pointed out that the purpose of an indicator is to mark (usually by a change of color) the point at which just enough of the titrating solution has been added to complete the chemical change which it is intended to bring about. In the neutralization processes which are employed in the measurement of alkalies (!alkalimetry!) or acids (!acidimetry!) the end-point of the reaction should, in principle, be that of complete neutrality. Expressed in terms of ionic reactions, it should be the point at which the H^{+} ions from an acid[Note 1] unite with a corresponding number of OH^{-} ions from a base to form water molecules, as in the equation H^{+}, Cl^{-} + Na^{+}, OH^{-} --> Na^{+}, Cl^{-} + (H_{2}O). It is not usually possible to realize this condition of exact neutrality, but it is possible to approach it with sufficient exactness for analytical purposes, since substances are known which, in solution, undergo a sharp change of color as soon as even a minute excess of H^{+} or OH^{-} ions are present. Some, as will be seen, react sharply in the presence of H^{+} ions, and others with OH^{-} ions. These substances employed as indicators are usually organic compounds of complex structure and are closely allied to the dyestuffs in character. [Note 1: A knowledge on the part of the student of the ionic theory as applied to aqueous solutions of electrolytes is assumed. A brief outline of the more important applications of the theory is given in the Appendix.] BEHAVIOR OF ORGANIC INDICATORS The indicators in most common use for acid and alkali titrations are methyl orange, litmus, and phenolphthalein. In the following discussion of the principles underlying the behavior of the indicators as a class, methyl orange and phenolphthalein will be taken as types. It has just been pointed out that indicators are bodies of complicated structure. In the case of the two indicators named, the changes which they undergo have been carefully studied by Stieglitz (!J. Am. Chem. Soc.!, 25, 1112) and others, and it appears that the changes involved are of two sorts: First, a rearrangement of the atoms within the molecule, such as often occurs in organic compound
PREV.   NEXT  
|<   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50  
51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   >>   >|  



Top keywords:

indicators

 
employed
 

change

 
solution
 

complete

 

solutions

 

structure

 

phenolphthalein

 

orange

 

methyl


neutrality

 

organic

 
substances
 

INDICATORS

 

alkali

 

pointed

 
theory
 

undergo

 
compounds
 

BEHAVIOR


Appendix
 

aqueous

 

student

 

ORGANIC

 

allied

 

dyestuffs

 

character

 

closely

 

applied

 

outline


important

 

complex

 

assumed

 
knowledge
 
electrolytes
 

applications

 

appears

 
involved
 

occurs

 

compound


molecule

 

rearrangement

 

Stieglitz

 

studied

 

discussion

 
principles
 

underlying

 
litmus
 

common

 

titrations