FREE BOOKS

Author's List




PREV.   NEXT  
|<   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64  
65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>   >|  
ndicators occur at varying concentrations of H^{+} or OH^{-} ions. They do not indicate exact theoretical neutrality, but a particular indicator always shows its color change at a particular concentration of H^{+} or OH^{-} ions. The results of titration with a given indicator are, therefore, comparable. As a matter of fact, a small error is involved in the procedure as outlined above. The comparison of the acid and alkali solutions was made, using methyl orange as an indicator, while the titration of the oxalic acid is made with the use of phenolphthalein. For our present purposes the small error may be neglected but, if time permits, the student is recommended to standardize the alkali solution against one of the substances named in Note 1, page 41, and also to ascertain the comparative value of the acid and alkali solutions, using phenolphthalein as indicator throughout, and conducting the titrations as described above. This will insure complete accuracy.] II. OXIDATION PROCESSES GENERAL DISCUSSION In the oxidation processes of volumetric analysis standard solutions of oxidizing agents and of reducing agents take the place of the acid and alkali solutions of the neutralization processes already studied. Just as an acid solution was the principal reagent in alkalimetry, and the alkali solution used only to make certain of the end-point, the solution of the oxidizing agent is the principal reagent for the titration of substances exerting a reducing action. It is, in general, true that oxidizable substances are determined by !direct! titration, while oxidizing substances are determined by !indirect! titration. The important oxidizing agents employed in volumetric solutions are potassium bichromate, potassium permangenate, potassium ferricyanide, iodine, ferric chloride, and sodium hypochlorite. The important reducing agents which are used in the form of standard solutions are ferrous sulphate (or ferrous ammonium sulphate), oxalic acid, sodium thiosulphate, stannous chloride, arsenious acid, and potassium cyanide. Other reducing agents, as sulphurous acid, sulphureted hydrogen, and zinc (nascent hydrogen), may take part in the processes, but not as standard solutions. The most important combinations among the foregoing are: Potassium bichromate and ferrous salts; potassium permanganate and ferrous salts; potassium permanganate and oxalic acid, or its derivatives; iodine and sodium thiosulphate; hypo
PREV.   NEXT  
|<   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64  
65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>   >|  



Top keywords:

solutions

 
potassium
 

titration

 
agents
 

alkali

 

substances

 

reducing

 

indicator

 

solution

 

ferrous


oxidizing

 

standard

 
important
 

processes

 

oxalic

 

sodium

 
reagent
 

principal

 
volumetric
 

determined


iodine
 

bichromate

 

phenolphthalein

 

chloride

 

thiosulphate

 

sulphate

 

hydrogen

 

permanganate

 

exerting

 

alkalimetry


combinations

 

foregoing

 

neutralization

 
action
 
Potassium
 

studied

 

oxidizable

 
ferric
 

stannous

 

arsenious


ferricyanide

 

permangenate

 

ammonium

 

analysis

 

hypochlorite

 
derivatives
 

cyanide

 
nascent
 

general

 

sulphureted