FREE BOOKS

Author's List




PREV.   NEXT  
|<   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361  
362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   >>   >|  
and a good signal to watch in connection with the care and operation of his Delco-Light plant and battery. (Further mention will be made of the pilot ball in connection with the subject of proper operation.) It is necessary that the maximum specific gravity of pilot cells be as near 1.220 as possible. Any great variation higher or lower will affect the operation of the pilot balls. Therefore, every effort should be made to adjust the maximum specific gravity of pilot cells to 1.220 when placed in service. Batteries equipped with one pilot cell contain a white pilot ball which will be up when the specific gravity of the electrolyte is approximately 1.185. This ball will drop DOWN when the specific gravity falls a little below 1.185. In other words, the pilot ball will float at a specific gravity of 1:185 or higher, and will sink at a specific gravity lower than 1.185. Therefore, when the pilot ball is UP, the battery is more than half charged. When the pilot ball is DOWN, the battery is more than half discharged. Batteries equipped with two pilot cells have one cell which contains a white ball and the other cell a white ball with a blue band. The plain white ball will be UP when the specific gravity is approximately 1.175. The blue band ball will be UP when the specific gravity is approximately 1.205. When both balls are UP, the battery is charged. When DOWN, the battery is discharged. The blue band ball will drop soon after the battery starts on discharge, or, in other words, when the specific gravity falls below 1.205. The white ball will remain UP until the specific gravity falls below 1.175. The Ampere-Hour Meter The ampere-hour meter, Fig. 304, is an instrument for indicating to the user the state of charge of the battery at all times and serves to-stop the plant automatically so equipped, when the battery is charged. (Further mention will be made of the ampere hour meter on page 471.) In order to check the speed of the ampere-hour meter, use the following rule: On charge, the armature disc should give 16 revolutions in 30 seconds, with a charging rate of 15 amperes; on discharge, the armature disc should give 20 revolutions in 30 seconds, with a discharging rate of 15 amperes. [Fig. 304 Delco-Light Ampere-Hour Meter] Hydrometers The standard hydrometer for service men is known as the Type V-2B. A special type hydrometer showing three colored bands in place of numbers has
PREV.   NEXT  
|<   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361  
362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   >>   >|  



Top keywords:
gravity
 

specific

 

battery

 

operation

 

charged

 

equipped

 

approximately

 
ampere
 

discharged


amperes
 

revolutions

 

armature

 

charge

 

hydrometer

 

discharge

 
Ampere
 

seconds

 
connection

higher

 

maximum

 

Therefore

 
Further
 

service

 

mention

 

Batteries

 

charging

 

Hydrometers


showing
 

special

 

colored

 
numbers
 

automatically

 
discharging
 

signal

 

standard

 

affect


variation

 

effort

 

electrolyte

 

adjust

 

starts

 

indicating

 

subject

 
instrument
 
serves

proper

 
remain