FREE BOOKS

Author's List




PREV.   NEXT  
|<   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64  
65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>   >|  
than silver in strength and price. In the open country, telephone lines consist of bare wires of copper, of iron, of steel, or of copper-covered steel supported on insulators borne by poles. If the wires on the poles be many, cross-arms carry four to ten wires each and the insulators are mounted on pins in the cross-arms. If the wires on the poles be few, the insulators are mounted on brackets nailed to the poles. Wires so carried are called _open wires_. In towns and cities where many wires are to be carried along the same route, the wires are reduced in size, insulated by a covering over each, and assembled into a group. Such a bundle of insulated wires is called a _cable_. It may be drawn into a duct in the earth and be called an _underground cable_; it may be laid on the bottom of the sea or other water and be called a _submarine cable_; or it may be suspended on poles and be called an _aerial cable_. In the most general practice each wire is insulated from all others by a wrapping of paper ribbon, which covering is only adequate when very dry. Cables formed of paper-insulated wires, therefore, are covered by a seamless, continuous lead sheath, no part of the paper insulation of the wires being exposed to the atmosphere during the cable's entire life in service. Telephone cables for certain uses are formed of wires insulated with such materials as soft rubber, gutta-percha, and cotton or jute saturated with mineral compounds. When insulated with rubber or gutta-percha, no continuous lead sheath is essential for insulation, as those materials, if continuous upon the wire, insulate even when the cable is immersed in water. Sheaths and other armors can assist in protecting these insulating materials from mechanical injury, and often are used for that purpose. The uses to which such cables are suitable in telephony are not many, as will be shown. A wire supported on poles requires that it be large enough to support its own weight. The smaller the wire, the weaker it is, and with poles a given distance apart, the strength of the wire must be above a certain minimum. In regions where freezing occurs, wires in the open air can collect ice in winter and everywhere open wires are subject to wind pressure; for these reasons additional strength is required. Speaking generally, the practical and economical spacing of poles requires that wires, to be strong enough to meet the above conditions, shall have a diameter not l
PREV.   NEXT  
|<   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64  
65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>   >|  



Top keywords:
insulated
 

called

 

continuous

 

strength

 

insulators

 
materials
 
requires
 

rubber

 

percha

 

cables


formed

 
sheath
 

insulation

 

supported

 

covered

 

carried

 

copper

 

mounted

 

covering

 

mechanical


assist
 

armors

 

insulating

 
protecting
 
Sheaths
 
Speaking
 
required
 

diameter

 

generally

 

conditions


spacing

 
strong
 

essential

 

compounds

 

insulate

 
injury
 

economical

 

practical

 

immersed

 
weight

smaller

 

occurs

 

support

 
weaker
 

freezing

 

distance

 

mineral

 

regions

 

collect

 
purpose