FREE BOOKS

Author's List




PREV.   NEXT  
|<   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71  
72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   >>   >|  
ion following the preceding thought upon capacity. [Illustration: Fig. 34. Test of Line with Varying Serial Inductance] Capacity and inductance depend only on states of matter. Their reactances depend on states of matter and actions of energy. In circuits having both resistance and capacity or resistance and inductance, both properties affect the passage of current. The joint reaction is expressed in ohms and is called _impedance_. Its value is the square root of the sum of the squares of the resistance and reactance, or, Z being impedance, ------------------------- / 1 Z = / R^{2} + ---------------- \/ C^{2}[omega]^{2} and -------------------------- Z = / R^{2} + L^{2}[omega]^{2} \/ the symbols meaning as before. In words, these formulas mean that, knowing the frequency of the current and the capacity of a condenser, or the frequency of the current and the inductance of a circuit (a line or piece of apparatus), and in either case the resistance of the circuit, one may learn the impedance by calculation. Insulation of Conductors. The fourth property of telephone lines, insulation of the conductors, usually is expressed in ohms as an insulation resistance. In practice, this property needs to be intrinsically high, and usually is measured by millions of ohms resistance from the wire of a line to its mate or to the earth. It is a convenience to employ a large unit. A million ohms, therefore, is called a _megohm_. In telephone cables, an insulation resistance of 500 megohms per mile at 60 deg. Fahrenheit is the usual specification. So high an insulation resistance in a paper-insulated conductor is only attained by applying the lead sheath to the cable when its core is made practically anhydrous and kept so during the splicing and terminating of the cable. Insulation resistance varies inversely as the length of the conductor. If a piece of cable 528 feet long has an insulation resistance of 6,750 megohms, a mile (ten times as much) of such cable, will have an insulation resistance of 675 megohms, or one-tenth as great. Inductance vs. Capacity. The mutual capacity of a telephone line is greater as its wires are closer together. The self-induction of a telephone line is smaller as its wires are closer together. The electromotive force induced by the capacity of a line leads the impressed electromotive force by 90 degrees. The inductive el
PREV.   NEXT  
|<   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71  
72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   >>   >|  



Top keywords:

resistance

 

insulation

 

capacity

 

telephone

 
megohms
 

inductance

 

current

 

impedance

 

property

 

conductor


Insulation

 

called

 

circuit

 
expressed
 
Inductance
 
Capacity
 

electromotive

 

frequency

 

depend

 

closer


matter

 

states

 

sheath

 
applying
 

cables

 

megohm

 
million
 
insulated
 

specification

 
Fahrenheit

attained
 

mutual

 
greater
 

induction

 
degrees
 

inductive

 

impressed

 
smaller
 

induced

 

terminating


varies

 
inversely
 

splicing

 

anhydrous

 
length
 

practically

 

reaction

 

passage

 
affect
 

properties