FREE BOOKS

Author's List




PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  
insulating material. The larger the surfaces, the closer they are together; and the higher the specific inductive capacity of the insulator, the greater the capacity of the device. An insulator used in this relation to two conducting surfaces is called the _dielectric_. [Illustration: Fig. 28. Simple Condenser] [Illustration: Fig. 29. Condenser Symbols] Two conventional signs are used to illustrate condensers, the upper one of Fig. 29 growing out of the original condenser of two metal plates, the lower one suggesting the thought of interleaved conductors of tin foil, as for many years was the practice in condenser construction. With relation to this property, a telephone line is just as truly a condenser as is any other arrangement of conductors and insulators. Assume such a line to be open at the distant end and its wires to be well insulated from each other and the earth. Telegraphy through such a line by ordinary means would be impossible. All that the battery or other source could do would be to cause current to flow into the line for an infinitesimal time, raising the wires to its potential, after which no current would flow. But, by virtue of electrostatic capacity, the condition is much as shown in Fig. 30. The condensers which that figure shows bridged across the line from wire to wire are intended merely to fix in the mind that there is a path for the transfer of electrical energy from wire to wire. [Illustration: Fig. 30. Line with Shunt Capacity] A simple test will enable two of the results of a short-circuiting capacity to be appreciated. Conceive a very short line of two wires to connect two local battery telephones. Such a line possesses negligible resistance, inductance, and shunt capacity. Its insulation is practically infinite. Let condensers be bridged across the line, one by one, while conversation goes on. The listening observer will notice that the sounds reaching his ear steadily grow less loud as the capacity across the line increases. The speaking observer will notice that the sounds he hears through the receiver in series with the line steadily grow louder as the capacity across the line increases. Fig. 31 illustrates the test. The speaker's observation in this test shows that increasing the capacity across the line increased the amount of current entering it. The hearer's observation in this test shows that increasing the capacity across the line decreased the amount of energy
PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  



Top keywords:
capacity
 

condensers

 

Illustration

 

current

 

condenser

 
increasing
 
amount
 

observation

 

energy

 

sounds


notice

 
conductors
 

steadily

 

observer

 

bridged

 

increases

 

battery

 

Condenser

 

insulator

 

surfaces


relation
 

telephones

 

connect

 
appreciated
 
Conceive
 
possesses
 
negligible
 

insulation

 

practically

 

infinite


resistance

 
inductance
 

circuiting

 

thought

 

electrical

 
transfer
 

Capacity

 

enable

 

results

 
greater

device

 

simple

 

illustrates

 
speaker
 

louder

 

series

 

receiver

 

larger

 

hearer

 
decreased