FREE BOOKS

Author's List




PREV.   NEXT  
|<   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68  
69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   >>   >|  
turned into sound at his receiver. [Illustration: Fig. 31. Test of Line with Varying Shunt Capacity] The unit of electrostatic capacity is the _farad_. As this unit is inconveniently large, for practical applications the unit _microfarad_--millionth of a farad--is employed. If quantities are known in microfarads and are to be used in calculations in which the values of the capacity require to be farads, care should be taken to introduce the proper corrective factor. The electrostatic capacity between the conductors of a telephone line depends upon their surface area, their length, their position, and the nature of the materials separating them from each other and from other things. For instance, in an open wire line of two wires, the electrostatic capacity depends upon the diameter of the wires, upon the length of the line, upon their distance apart, upon their distance above the earth, and upon the specific inductive capacity of the air. Air being so common an insulating medium, it is taken as a convenient material whose specific inductive capacity may be used as a basis of reference. Therefore, the specific inductive capacity of air is taken as unity. All solid matter has higher specific inductive capacity than air. The electrostatic capacity of two open wires .165 inch diameter, 1 ft. apart, and 30 ft. above the earth, is of the order of .009 microfarads per mile. This quantity would be higher if the wires were closer together; or nearer the earth; or if they were surrounded by a gas other than the air or hydrogen; or if the wires were insulated not by a gas but by any solid covering. As another example, a line composed of two wires of a diameter of .036 inch, if wrapped with paper and twisted into a pair as a part of a telephone-cable, has a mutual electrostatic capacity of approximately .08 microfarads per mile, this quantity being greater if the cable be more tightly compressed. The use of paper as an insulator for wires in telephone cables is due to its low specific inductive capacity. This is because the insulation of the wires is so largely dry air. Rubber and similar insulating materials give capacities as great as twice that of dry paper. The condenser or other capacity acts as an effective barrier to the steady flow of direct currents. Applying a fixed potential causes a mere rush of current to charge its surface to a definite degree, dependent upon the particular conditions. The condenser does
PREV.   NEXT  
|<   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68  
69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   >>   >|  



Top keywords:
capacity
 

inductive

 

specific

 

electrostatic

 

microfarads

 
diameter
 
telephone
 

materials

 

depends

 

length


surface

 
distance
 

quantity

 

higher

 

insulating

 

condenser

 

conditions

 

hydrogen

 

insulated

 

surrounded


nearer
 

wrapped

 

twisted

 
composed
 
covering
 
current
 
capacities
 

effective

 

Applying

 

potential


currents

 
direct
 

barrier

 

steady

 

similar

 
tightly
 

compressed

 

greater

 

degree

 
mutual

approximately

 

insulator

 

cables

 
insulation
 

largely

 

Rubber

 

definite

 

charge

 

dependent

 
quantities