FREE BOOKS

Author's List




PREV.   NEXT  
|<   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179  
180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   >>   >|  
er together, it will be found that more current will now flow into each of them, although the difference of potential between the two plates must obviously remain the same, since each of them is still connected to the battery. [Illustration: Fig. 119. Condenser Plate] Theory. Due to the proximity of the plates, the positive electricity on plate _A_ is drawn by the negative charge on plate _B_ towards plate _B_, and likewise the negative electricity on plate _B_ is drawn to the side towards plate _A_ by the positive charge on that plate. These two charges so drawn towards each other will, so to speak, bind each other, and they are referred to as _bound charges_. The charge on the right-hand side of plate _A_ and on the left-hand side of plate _B_ will, however, be free charges, since there is nothing to attract them, and these are, therefore, neutralized by a further flow of electricity from the battery to the plate. [Illustration: Fig. 120. Theory of Condenser] Obviously, the closer together the plates are the stronger will be the attractive influence of the two charges on each other. From this it follows that in the case of plate _A_, when the two plates are being moved closer together, more positive electricity will flow into plate _A_ to neutralize the increasing free negative charges on the right-hand side of the plate. As the plates are moved closer together still, a new distribution of charges will take place, resulting in more positive electricity flowing into plate _A_ and more negative electricity flowing into plate _B_. The closer proximity of the plates, therefore, increases the capacity of the plates for holding charges, due to the increased inductive action across the dielectric separating the plates. Condenser Defined. A condenser is a device consisting of two adjacent plates of conducting material, separated by an insulating material, called a _dielectric_. The purpose is to increase by the proximity of the plates, each to the other, the amount of electricity which each plate will receive and hold when subjected to a given potential. Dielectric. We have already seen that the capacity of a condenser depends upon the area of its plates, and also upon their distance apart. There is still another factor on which the capacity of a condenser depends, _i.e._, on the character of the insulating medium separating its plates. The inductive action which takes place between a charged conductor and othe
PREV.   NEXT  
|<   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179  
180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   >>   >|  



Top keywords:

plates

 

electricity

 

charges

 
negative
 
positive
 

closer

 

proximity

 
charge
 

Condenser

 

capacity


condenser

 

depends

 

inductive

 
flowing
 

separating

 

insulating

 

material

 
action
 

dielectric

 
Theory

battery

 
potential
 

Illustration

 

character

 
Defined
 

device

 

consisting

 

conducting

 

adjacent

 

factor


increased

 

conductor

 

charged

 

medium

 
separated
 

subjected

 
receive
 
Dielectric
 
distance
 

holding


called

 

amount

 

increase

 
purpose
 

Obviously

 

likewise

 

referred

 
difference
 

current

 
connected