FREE BOOKS

Author's List




PREV.   NEXT  
|<   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95  
96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   >>   >|  
hole apparatus is it necessary to be more careful than with the couplings which connect the various absorber systems with each other and with the valves; for these couplings are opened and closed once every hour or two and hence are subject to considerable strain at the different points. If they are not tight the experiment is a failure so far as the determination of oxygen is concerned. For the various parts of the absorber system we have relied upon the original type of couplings used in the earlier apparatus. A rubber gasket is placed between the male and female part of the coupling and the closure can be made very tight. In fact, after the absorbers are coupled in place they are invariably subjected to severe tests to prove tightness. For connecting the piping between the calorimeter and the absorption system we use ordinary one-inch hose-couplings, firmly set up by means of a wrench and disturbed only when necessary to change from one calorimeter chamber to another. ABSORBER TABLE. The purifying apparatus for the air-current is compactly and conveniently placed on a solidly constructed table which can be moved about the laboratory at will. The special form of caster on the bottom of the posts of the table permits its movement about the laboratory at will and by screwing down the hand screws the table can be firmly fixed to the floor. The details of the table are shown in fig. 30. (See also fig. 4, page 4.) The air coming from the calorimeter passes in the direction of the downward arrow through a 3/4-inch pipe into the blower, which is immersed in oil in an iron box F. The blower is driven by an electric motor fastened to a small shelf at the left of the table. The air leaving the blower ascends in the direction of the arrow to the valve system H, where it can be directed into one of the two parallel sets of purifiers; after it passes through these purifiers (sulphuric-acid vessel 2, potash-lime container K, and sulphuric-acid vessel 1) it goes through the sodium-bicarbonate can G to a duplicate valve system on top of the table. From there it passes through a pipe along the top of the table and rises in the vertical pipe to the hose connection which is coupled with the calorimeter chamber. The electric motor is provided with a snap-switch on one of the posts of the table and a regulating rheostat which permits variations in the speed of the motor and consequently in the ventilation produced by the blo
PREV.   NEXT  
|<   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95  
96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   >>   >|  



Top keywords:

calorimeter

 

system

 

couplings

 

blower

 
passes
 

apparatus

 

sulphuric

 

vessel

 

permits

 

laboratory


purifiers

 

firmly

 

direction

 
absorber
 
chamber
 
coupled
 

electric

 

downward

 

screws

 

screwing


movement

 

bottom

 

details

 
immersed
 

coming

 

leaving

 
vertical
 
duplicate
 

sodium

 
bicarbonate

connection
 

provided

 
ventilation
 

produced

 
variations
 

rheostat

 

switch

 
regulating
 

ascends

 

fastened


driven

 
caster
 

potash

 

container

 
directed
 

parallel

 

disturbed

 

determination

 
oxygen
 

failure