FREE BOOKS

Author's List




PREV.   NEXT  
|<   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>  
oxide from a carbonate by means of acid has frequently been employed for controlling an apparatus used for researches in gaseous exchange, but this only furnishes a definite amount of carbon dioxide and throws no light whatever upon the ability of the apparatus to determine the other two factors, water-vapor and oxygen. Some of the earlier experimenters have used burning candles, but these we have found to be extremely unsatisfactory. The necessity for an accurate elementary analysis, the high carbon content of the stearin and paraffin, and the possibility of a change in the chemical composition of the material all render this method unfit for the most accurate testing. As a result of a large number of experiments with different materials, we still rely upon the use of ethyl alcohol of known water-content. The experiments with absolute alcohol and with alcohol containing varying amounts of water showed no differences in the results, and hence it is now our custom to obtain the highest grade commercial alcohol, determine the specific gravity accurately, and burn this material. We use the Squibb pyknometer[28] and thereby can determine the specific gravity of the alcohol to the fifth or sixth decimal place with a high degree of accuracy. Using the alcoholometric tables of Squibb[29] or Morley,[30] the percentage of alcohol by weight is readily found, and from the chemical composition of the alcohol can be computed not only the amount of carbon dioxide and water-vapor formed and oxygen absorbed by the combustion of 1 gram of ethyl hydroxide containing a definite known amount of water, but also the heat developed during its combustion. With the construction of this apparatus it was found impracticable to employ the type of alcohol lamp formerly used with success in the Wesleyan University respiration chamber. Inability to illuminate the gage on the side of the lamp and the small windows on the side of the calorimeter precluded its use. It was necessary to resort to the use of an ordinary kerosene lamp with a large glass font and an Argand burner. Of the many check-tests made we quote one of December 31, 1908, made with the bed calorimeter: Several preliminary weights of the rates of burning were made before the lamp was introduced into the chamber. The lamp was then put in place and the ventilation started without sealing the cover. The lamp burned for about one hour and a quarter and was then we
PREV.   NEXT  
|<   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>  



Top keywords:

alcohol

 

carbon

 

amount

 
determine
 
apparatus
 

accurate

 

material

 
composition
 

experiments

 

chemical


calorimeter

 

Squibb

 

combustion

 
gravity
 

specific

 

chamber

 

content

 
definite
 

dioxide

 
oxygen

burning

 
started
 

sealing

 

impracticable

 
construction
 

ventilation

 

success

 

employ

 

formed

 

absorbed


quarter

 

computed

 

percentage

 

weight

 
readily
 

Wesleyan

 
burned
 
developed
 
hydroxide
 

introduced


Argand

 

Several

 

ordinary

 
kerosene
 

burner

 

December

 

resort

 
illuminate
 

Inability

 
respiration