FREE BOOKS

Author's List




PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>  
and Voit, if the weight of the excretions and the loss in body-weight are taken into consideration, the difference between the weight of the excretions and the loss in body-weight should be the weight of the oxygen absorbed. With this apparatus we are able to determine the water-vapor, the carbon-dioxide excretion, and the weight of the urine and feces when passed. If there is an accurate determination of the body-weight from hour to hour, this should give the data for computing exactly the oxygen consumption. Moreover, we have the direct determination of oxygen with which the indirect method can be compared. In the earlier apparatus this comparison was by no means as satisfactory as was desired. The balance there used was sensitive only to 2 grams, the experiments were long (24 hours or more), and it seemed to be absolutely impossible, even by exerting the utmost precaution, to secure the body-weight of the subject each day with exactly the same clothing and accessories. Furthermore, where there is a constant change in body-weight amounting to 0.5 gram or more per minute, it is obvious that the weighing should be done at exactly the same moment from day to day. It is seen, therefore, that the comparison with the direct oxygen determination is in reality an investigation by itself, involving the most accurate measurements and the most painstaking development of routine. With the hope of contributing materially to our knowledge regarding the indirect determination of oxygen, the special form of balance shown in fig. 9 was installed above the chair calorimeter. This balance is extremely sensitive. With a dead load of 100 kilograms in each pan it has shown a sensitiveness of 0.1 gram, but in order to have the apparatus absolutely air-tight for the oxygen and carbon-dioxide determination, the rod on which the weighing-chair is suspended must pass through an air-tight closure. For this closure we have used a thin rubber membrane, weighing about 1.34 grams, one end of which is tied to a hard-rubber tube ascending from the chair to the top of the calorimeter, the other end being tied to the suspension rod. In playing up and down this rod takes up a varying weight of the rubber diaphragm, depending upon the position which it assumes, and therefore the sensitiveness noted by the balance with a dead load and swinging freely is greater than that under conditions of actual use. Preliminary tests with the balance lead us to beli
PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>  



Top keywords:

weight

 

oxygen

 
determination
 
balance
 

weighing

 

rubber

 
apparatus
 

sensitive

 

absolutely

 
closure

sensitiveness
 

comparison

 

calorimeter

 

indirect

 

accurate

 

excretions

 

dioxide

 

direct

 

carbon

 

suspended


membrane

 
difference
 
absorbed
 

consideration

 

extremely

 
installed
 

determine

 

kilograms

 

greater

 
freely

swinging
 
assumes
 

conditions

 
actual
 

Preliminary

 

position

 
ascending
 

suspension

 

diaphragm

 

depending


varying

 

playing

 
knowledge
 

impossible

 

exerting

 

computing

 

utmost

 
precaution
 

accessories

 

Furthermore