FREE BOOKS

Author's List




PREV.   NEXT  
|<   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104  
105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>  
ining small amounts of carbon dioxide with great accuracy, the method for determining water-vapor to be accurate calls for the use of rather large quantities of air. From preliminary experiments with a sling psychrometer it was found that its use was precluded by the space required to successfully use this instrument, the addition of an unknown amount of water to the chamber from the wet bulb, and the difficulties of reading the instrument from without the chamber. Recourse was had to the determination of moisture by the absolute method, in that a definite amount of air is caused to pass over pumice-stone saturated with sulphuric acid. It is of interest here to record that at the moment of writing a series of experiments are in progress in which an attempt is being made to use a hair hygrometer for this purpose. The method of determining the water-vapor and carbon dioxide in the residual air is extremely simple, in that a definite volume of air is caused to pass over sulphuric acid and soda-lime contained in U-tubes. In other words, a small amount of air is caused to pass through a small absorbing-system constructed of U-tubes rather than of porcelain vessels and silver-plated cans. Formerly a very elaborate apparatus was employed for aspirating the air from the chamber through U-tubes and then returning the aspirated air to the chamber. This involved the use of a suction-pump and called for a special installation for maintaining the pressure of water constant. More recently a much simpler device has been employed, in that we have taken advantage of the pressure in the ventilating air-system developed by the passage of air through the blower. After forcing a definite quantity of air through the reagents in the U-tubes, it is then conducted back to the system after having been measured in a gas-meter. This procedure is best noted from fig. 30. The connected series of three U-tubes on the rack on the table is joined on one end by well-fitting rubber connections to the tube leading from the mercurial manometer and on the other end to the rubber tube A leading to the gas-meter. On lowering the mercury reservoir E, the mercury is drained out of the tube D and air passes through both arms of the tube and then through the three U-tubes. In the first of these it is deprived of moisture, and in the last two of carbon dioxide. The air then enters the meter, where it is measured and leaves the meter through the tube B, saturate
PREV.   NEXT  
|<   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104  
105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>  



Top keywords:

chamber

 

definite

 

dioxide

 

carbon

 
method
 

system

 

amount

 

caused

 

series

 

sulphuric


rubber

 

leading

 

mercury

 
measured
 
employed
 
moisture
 

pressure

 

instrument

 

experiments

 

determining


connected

 

conducted

 

quantity

 
reagents
 

procedure

 

accurate

 
forcing
 
passage
 

simpler

 
device

recently
 

constant

 
developed
 

blower

 
ventilating
 

advantage

 

passes

 
drained
 

deprived

 

leaves


saturate

 
enters
 

reservoir

 

fitting

 
accuracy
 

connections

 

quantities

 

joined

 
amounts
 

lowering