FREE BOOKS

Author's List




PREV.   NEXT  
|<   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101  
102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>  
portion of the circulating air-current so that there may be a contraction and expansion in the volume without producing a pressure on the system. This was done in a manner similar to that described in the earlier apparatus, but on a much simpler plan. To the air-pipe just before it entered the calorimeter was attached a copper can with a rubber diaphragm top. This diaphragm, which is, as a matter of fact, a ladies' pure rubber bathing-cap, allows for an expansion or contraction of air in the system of 2 to 3 liters. The apparatus shown in position is to be seen in fig. 25, in which the tin can I is covered with the rubber diaphragm J. If there is any change in volume, therefore, the rubber diaphragm rises or falls with it and under ordinary conditions of an experiment this arrangement results in a pressure in the chamber approximately that of the atmosphere. It was found, however, that even the slight resistance of the piping from the tension-equalizer to the chamber, a pipe some 26 millimeters in diameter and 60 centimeters long, was sufficient to cause a slightly diminished pressure inside the calorimeter, inasmuch as the air was sucked out by the blower with a little greater speed than it was forced in by the pressure at the diaphragm. Accordingly the apparatus has been modified so that at present the tension-equalizer is attached directly to the wall of the calorimeter independent of the air-pipe. In most of the experiments made thus far it has been our custom to conduct the supply of fresh oxygen through pet-cock K on the side of the tension-equalizer. This is shown more in detail in fig. 32, in which, also, is shown the interior construction of the can. Owing to the fact that the air inside of this can is much dryer than the room air, we have followed the custom with the earlier apparatus of placing a vessel containing sulphuric acid inside the tension-equalizer, so that any moisture absorbed by the dry air inside the diaphragm may be taken up by the acid and not be carried into the chamber. The air passing through the pipe to the calorimeter is, it must be remembered, absolutely dry and hence there are the best conditions for the passage of moisture from the outside air through the diaphragm to this dry air. Attaching the tension-equalizer directly to the calorimeter obviates the necessity for this drying process and hence the sulphuric-acid vessel has been discarded. The valve H (fig. 25) is used to cut of
PREV.   NEXT  
|<   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101  
102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   >>  



Top keywords:

diaphragm

 

calorimeter

 
tension
 

equalizer

 

rubber

 

inside

 

apparatus

 
pressure
 

chamber

 

system


contraction

 

conditions

 

moisture

 
volume
 
custom
 

sulphuric

 

vessel

 
expansion
 

directly

 

earlier


attached
 

Accordingly

 
supply
 

oxygen

 

experiments

 

independent

 

conduct

 

modified

 

present

 
passing

process

 

drying

 

carried

 
necessity
 

passage

 
absolutely
 
remembered
 

obviates

 

Attaching

 
forced

construction

 
interior
 
discarded
 

absorbed

 

placing

 

detail

 

slight

 
bathing
 
matter
 

ladies