FREE BOOKS

Author's List




PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  
anhydrous hydrobromic acid in presence of ether [Fenton], yielding a brommethyl furfural C_{6}H_{12}O_{6} - 4H_{2}O + HBr = C_{5}H_{3}.O_{2}.CH_{2}Br with a Br atom in the methyl group. These researches of Fenton's appear to us to have the most obvious and direct bearings upon the genetic relationships of the plant furfuroids and not only _per se_. To give them their full significance we must recall the later researches of Brown and Morris, which establish that cane sugar is a primary or direct product of assimilation, and that starch, which had been assumed to be a species of universal _matiere premiere_, is probably rather a general reserve for the elaborating work of the plant. If now the aldose groups tend to pass over into the starch form, representing a temporary overflow product of the assimilating energy, it would appear that the ketose or levulose groups are preferentially used up in the elaboration of the permanent tissue. We must also take into consideration the researches of Lobry de Bruyn showing the labile functions of the typical CO group in both aldoses and hexoses, whence we may conclude that in the plant-cell the transition from dextrose to levulose is a very simple and often occurring process. We ourselves have contributed a link in this chain of evidence connecting the furfuroids of the plant with levulose or other keto-hexose. We have shown that the hydroxyfurfurals are constituents of the lignocelluloses. The proportion present in the free state is small, and it is not difficult to show that they are products of breakdown of the lignone groups. If we assume that such groups are derived ultimately from levulose, we have to account for the detachment of the methyl group. This, however, is not difficult, and we need only call to mind that the lignocelluloses are characterised by the presence of methoxy groups and a residue which is directly and easily hydrolysed to acetic acid. Moreover, the condensation need not be assumed to be a simple dehydration with attendant rearrangement; it may very well be accompanied or preceded by fixation of oxygen. Leaving out the hypothetical discussion of minor variations, there is a marked convergence of the evidence as to the main facts which establish the general relationships of the furfuroid group. This group includes both saturated and unsaturated or condensed compounds. The former are constituents of celluloses, the latter of the lignone complex of th
PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  



Top keywords:

groups

 

levulose

 

researches

 

product

 

difficult

 

establish

 

starch

 

lignocelluloses

 

constituents

 
furfuroids

direct
 

relationships

 

assumed

 
Fenton
 

presence

 

simple

 
evidence
 

lignone

 
methyl
 

general


ultimately
 

derived

 

breakdown

 

products

 

assume

 

hydroxyfurfurals

 

contributed

 

process

 

dextrose

 

occurring


connecting

 

present

 

proportion

 
hexose
 

acetic

 

convergence

 

marked

 
hypothetical
 

discussion

 
variations

furfuroid
 
includes
 

celluloses

 

complex

 

compounds

 

saturated

 

unsaturated

 

condensed

 
Leaving
 

methoxy