FREE BOOKS

Author's List




PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  
ter may be made to yield a perfect skeleton of the fibre after burning off the organic matter. It is by such means that the mantles used in the Welsbach system of incandescent lighting are prepared. A purified cotton fabric--or yarn--is treated with a concentrated solution of the mixed nitrates of thorium and cerium, and, after drying, the cellulose is burned away. A perfect and coherent skeleton of the fabric is obtained, composed of the mixed oxides. Such mantles have fulfilled the requirements of the industry up to the present time, but later experiments forecast a notable improvement. It has been found that artificial cellulose fibres can be spun with solutions containing considerable proportions of soluble compounds of these oxides. Such fibres, when knitted into mantles and ignited, yield an inorganic skeleton of the oxides of homogeneous structure and smooth contour. De Mare in 1894, and Knofler in 1895, patented methods of preparing such cellulose threads containing the salts of thorium and cerium, by spinning a collodion containing the latter in solution. When finally ignited, after being brought into the suitable mantle form, there results a structure which proves vastly more durable than the original Welsbach mantle. The cause of the superiority is thus set forth by V. H. Lewes in a recent publication (J. Soc. of Arts, 1900, p. 858): 'The alteration in physical structure has a most extraordinary effect upon the light-giving life of the mantle, and also on its strength, as after burning for a few hundred hours the constant bombardment of the mantle by dust particles drawn up by the rush of air in the chimney causes the formation of silicates on the surface of the mantle owing to silica being present in the air, and this seems to affect the Welsbach structure far more than it does the "Clamond" type, with the result that when burned continuously the Welsbach mantle falls to so low a pitch of light emissivity after 500 to 600 hours, as to be a mere shadow of its former self, giving not more than one-third of its original light, whilst the Knofler mantle keeps up its light-emitting power to a much greater extent, and the Lehner fabric is the most remarkable of all. Two Lehner mantles which have now been burning continuously in my laboratory for over 3,000 hours give at this moment a brighter light emissivity than most of the Welsbachs do in their prime.' ...'The new developments of the Clamond process form as impor
PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  



Top keywords:

mantle

 

Welsbach

 

mantles

 

structure

 

oxides

 
fabric
 

skeleton

 

burning

 

cellulose

 

Clamond


burned
 

ignited

 

Knofler

 

emissivity

 

continuously

 

fibres

 

present

 
perfect
 

Lehner

 

giving


original

 

solution

 

thorium

 

cerium

 

effect

 

surface

 
affect
 
extraordinary
 

silicates

 
physical

silica

 

alteration

 

chimney

 
constant
 

bombardment

 

strength

 

hundred

 

particles

 
formation
 

laboratory


extent

 

remarkable

 

developments

 

process

 

moment

 

brighter

 
Welsbachs
 
greater
 

result

 

shadow