FREE BOOKS

Author's List




PREV.   NEXT  
|<   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49  
50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   >>   >|  
r has been accumulated in view of the ultimate contribution of the results to the general theory of colloidal solutions. But viscose is a complex product and essentially variable, through its pronounced tendency to progressive decomposition with reversion of the cellulose to its insoluble and uncombined condition. The solution for this reason does not lend itself to exact measurement of its physical constants such as might elucidate in some measure the progressive molecular aggregation of the cellulose in assuming spontaneously the solid (hydrate) form. Reserving the discussion of these points, therefore, we confine ourselves to recording results which further elucidate special points. _Normal and other celluloses._--We may certainly use the sulphocarbonate reaction as a means of defining a normal cellulose. As already pointed out, cotton cellulose passes quantitatively through the cycle of treatments involved in solution as sulphocarbonate and decomposition of the solution with regeneration as structureless or amorphous cellulose (hydrate). Analysis of this cellulose shows a fall of carbon percentage from 44.4 to 43.3, corresponding with a change in composition from C_{6}H_{10}O_{5} to 4C_{6}H_{10}O_{5}.H_{2}O. The partial hydrolysis affects the whole molecule, and is limited to this effect, whereas, in the case of celluloses of other types, there is a fractionation of the mass, a portion undergoing a further hydrolysis to compounds of lower molecular weight and permanently soluble. Thus in the case of the wood celluloses the percentage recovered from solution as viscose is from 93 to 95 p.ct. It is evident that these celluloses are not homogeneous. A similar conclusion results from the presence of furfural-yielding compounds with the observation that the hydrolysis to soluble derivatives mainly affects these derivatives. In the empirical characterisation of a normal cellulose, therefore, we may include the property of quantitative regeneration or recovery from its solution as sulphocarbonate. In the use of the word 'normal' as applied to a 'bleached' cotton, we have further to show in what respects the sulphocarbonate reaction differentiates the bleached or purified cotton cellulose from the raw product. The following experiments may be cited: Specimens of American and Egyptian cottons in the raw state, freed from mechanical, i.e. non-fibrous, impurities, were treated with a mercerising alkali, and the alkali-c
PREV.   NEXT  
|<   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49  
50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   >>   >|  



Top keywords:

cellulose

 

solution

 

celluloses

 

sulphocarbonate

 

hydrolysis

 

cotton

 

normal

 

results

 

affects

 
derivatives

points
 

molecular

 

hydrate

 
bleached
 

reaction

 

compounds

 
regeneration
 

soluble

 
percentage
 

elucidate


progressive
 

decomposition

 

viscose

 

alkali

 

product

 

recovered

 

permanently

 

impurities

 

fibrous

 

evident


weight

 

treated

 

effect

 
mercerising
 

limited

 

molecule

 

homogeneous

 
undergoing
 

portion

 
fractionation

similar
 
Egyptian
 

cottons

 

applied

 

respects

 

experiments

 

Specimens

 

purified

 
differentiates
 

American