FREE BOOKS

Author's List




PREV.   NEXT  
|<   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322  
323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   >>   >|  
by considering the method of Jacobi and Mayer, while a good summary is obtained by the formulation in terms of a Pfaffian expression. Characteristic chains. Consider a solution of F = 0 expressed by the three independent equations F = 0, G = 0, H = 0. If it be a solution in which there is more than one relation connecting x, y, z, let new variables x', y', z', p', q' be introduced, as before explained under PFAFFIAN EXPRESSIONS, in which z' is of the form z' = z - p1x1 - ... - p_s x_s (s = 1 or 2), so that the solution becomes of a form z' = [psi](x'y'), p' = d[psi]/dx', q' = d[psi]/dy', which then will identically satisfy the transformed equations F' = 0, G' = 0, H' = 0. The equation F' = 0, if x', y', z' be regarded as fixed, states that the plane Z - z' = p'(X - x') + q'(Y - y') is tangent to a certain cone whose vertex is (x', y', z'), the consecutive point (x' + dx', y' + dy', z' + dz') of the generator of contact being such that /dF' /dF' / / dF' dF'\ dx'/ -- = dy'/ -- = dz'/ ( p'--- + q' --- ). / dp' / dq' / \ dp' dq'/ Passing in this direction on the surface z' = [psi](x', y') the tangent plane of the surface at this consecutive point is (p' + dp', q' + dq'), where, since F'(x', y', [psi], d[psi]/dx', d[psi]/dy') = 0 is identical, we have dx' (dF'/dx' + p'dF'/dz') + dp'dF'/dp' = 0. Thus the equations, which we shall call the characteristic equations, /dF' /dF' // dF' dF'\ // dF' dF'\ dx'/ --- = dy'/ --- = dz'/( p' --- + q'--- ) = dp'/( - --- - p'--- ) / dp' / dq' / \ dp' dq'/ / \ dx' dz'/ // dF' dF'\ = dq'/( - --- - q'--- ) / \ dy' dz'/ are satisfied along a connectivity of [oo]^1 elements consisting of a curve on z' = [psi](x', y') and the tangent planes of the surface along this curve. The equation F' = 0, when p', q' are fixed, represents a curve in the plane Z - z' = p'(X - x') + q'(Y - y') passing through (x', y', z'); if (x' + [delta]x', y' + [delta]y', z' + [delta]z') be a consecutive point of this curve, we find at once /dF' dF'\ /dF' dF'\ [delta]x'( --- + p'--- ) + [delta]y'( --- + q'--- ) =
PREV.   NEXT  
|<   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322  
323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   >>   >|  



Top keywords:

equations

 

surface

 
tangent
 

consecutive

 
solution
 

equation

 

vertex

 

consisting


elements

 

passing

 

represents

 
planes
 

satisfied

 

Passing

 
identical
 
characteristic

direction
 

generator

 

contact

 
connectivity
 
expressed
 

Consider

 

chains

 

Characteristic


independent
 
expression
 

Pfaffian

 

Jacobi

 

method

 

formulation

 
obtained
 

summary


regarded

 

transformed

 

satisfy

 

identically

 

EXPRESSIONS

 

connecting

 

relation

 
variables

introduced

 
PFAFFIAN
 
explained
 

states