FREE BOOKS

Author's List




PREV.   NEXT  
|<   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367  
368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   >>   >|  
The ascending series for J1(z), used by Sir G. B. Airy (_Camb. Trans._, 1834) in his original investigation of the diffraction of a circular object-glass, and readily obtained from (6), is z z^3 z^5 z^7 J1(z) = - - ----- + --------- - ------------- + ... (9). 2 2^2.4 2^2.4^2.6 2^2.4^2.6^2.8 When z is great, we may employ the semi-convergent series _ / / 2 \ | 3.5.1 /1\^2 J1(z) = / ( ----- ) sin (z - 1/4[pi]) |1 + ------ ( - ) \/ \[pi]z/ |_ 8.16 \z/ _ 3.5.7.9.1.3.5 /1\^4 | - ------------- ( - ) + ... | 8.16.24.32 \z/ _| _ / / 2 \ | 3 1 3.5.7.1.3 /1\ ^3 + / ( ----- ) cos (z - 1/4[pi]) | - . - - --------- ( - ) \/ \[pi]z/ |_8 z 8.16.24 \z/ _ 3.5.7.9.11.1.3.5.7 /1\^5 | + ------------------ ( - ) - ... | ... (10). 8.16.24.32.40 \z/ _| A table of the values of 2z^-1J1(z) has been given by E. C. J. Lommel (_Schlomilch_, 1870, 15, p. 166), to whom is due the first systematic application of Bessel's functions to the diffraction integrals. The illumination vanishes in correspondence with the roots of the equation J1(z) = 0. If these be called z1 z2, z3, ... the radii of the dark rings in the diffraction pattern are f[lambda]z1 f[lambda]z2 -----------, -----------, ... 2[pi]R 2[pi]R being thus _inversely_ proportional to R. The integrations may also be effected by means of polar co-ordinates, taking first the integration with respect to [phi] so as to obtain the result for an infinitely thin annular aperture. Thus, if x = [rho] cos [phi], y = [rho] sin [phi], _ _ _R _2[pi] / / / / C = | | cos px dx dy = | | cos (p[rho] cos [theta]) [rho]d[rho] d[theta]. _/_/ _/0 _/0 Now by definition _1/2[pi] 2 / z^2 z^4 z^6 J0(z) = ---- | cos(z cos[theta])d[theta] = --- + ------- - ----------- + ...
PREV.   NEXT  
|<   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367  
368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   >>   >|  



Top keywords:

diffraction

 

lambda

 

series

 

equation

 
proportional
 
inversely
 

pattern

 

integrations


called

 

aperture

 

infinitely

 

result

 

obtain

 

annular

 

ordinates

 

effected


definition

 
respect
 

integration

 

taking

 
readily
 
obtained
 

object

 

convergent


employ

 

circular

 

ascending

 
original
 

investigation

 

systematic

 

application

 
Bessel

illumination

 
vanishes
 

integrals

 

functions

 
Schlomilch
 
values
 

Lommel

 

correspondence