FREE BOOKS

Author's List




PREV.   NEXT  
|<   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360  
361   362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   >>   >|  
sin^2 --------- sin^2 ---------- a^2b^2 f[lambda] f[lambda] I^2 = ------------ . ----------------- . ----------------- (3), f^2[lambda]^2 [pi]^2a^2[xi]^2 [pi]^2b^2[eta]^2 -------------- ------------- f^2[lambda]^2 f^2[lambda]^2 as representing the distribution of light in the image of a mathematical point when the aperture is rectangular, as is often the case in spectroscopes. The second and third factors of (3) being each of the form sin^2u/u^2, we have to examine the character of this function. It vanishes when u = m[pi], m being any whole number other than zero. When u = 0, it takes the value unity. The maxima occur when u = tan u, (4), and then sin^2u/u^2 = cos^2u (5). To calculate the roots of (5) we may assume u = (m + 1/2)[pi] - y = U - y, where y is a positive quantity which is small when u is large. Substituting this, we find cot y = U - y, whence 1 / y y- \ y^3 2y^5 17y^7 y = - ( 1 + - + --- + ... ) - --- ---- - -----. U \ U U^2 / 3 15 315 This equation is to be solved by successive approximation. It will readily be found that 2 13 146 u = U - y = U - U^-1 - -- U^-3 - -- U^-5 - --- U^-7 - ... (6). 3 15 105 In the first quadrant there is no root after zero, since tan u > u, and in the second quadrant there is none because the signs of u and tan u are opposite. The first root after zero is thus in the third quadrant, corresponding to m = 1. Even in this case the series converges sufficiently to give the value of the root with considerable accuracy, while for higher values of m it is all that could be desired. The actual values of u/[pi] (calculated in another manner by F. M. Schwerd) are 1.4303, 2.4590, 3.4709, 4.4747, 5.4818, 6.4844, &c. Since the maxima occur when u = (m + 1/2)[pi] nearly, the successive values are not very different from 4 4 4 -------, ------, --------, &c. 9[pi]^2 25[pi] 49[pi]^2 The application of these results to (3) shows that the field is brightest at the centre [xi] = 0, [eta] =
PREV.   NEXT  
|<   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360  
361   362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   >>   >|  



Top keywords:

lambda

 

values

 

quadrant

 

successive

 
maxima
 
accuracy
 

considerable

 

higher


opposite

 

sufficiently

 

converges

 

series

 

application

 

centre

 

brightest

 

results


manner

 
calculated
 

actual

 

desired

 
Schwerd
 
Substituting
 

vanishes

 

function


character

 

examine

 

number

 
distribution
 

representing

 

mathematical

 

spectroscopes

 
factors

rectangular

 
aperture
 

equation

 

solved

 
approximation
 
readily
 

assume

 

calculate


positive

 

quantity