FREE BOOKS

Author's List




PREV.   NEXT  
|<   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366  
367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   >>   >|  
in accordance with _ _+[oo] / / A'I0^2 = | | I^2 d[xi]d[eta], _/_/-[oo] the relation between A and A' is AA' = [lambda]^2f^2. Since A' is in some sense the area of the diffraction pattern, it may be considered to be a rough criterion of the definition, and we infer that the definition of a point depends principally upon the area of the aperture, and only in a very secondary degree upon the shape when the area is maintained constant. 4. _Theory of Circular Aperture._--We will now consider the important case where the form of the aperture is circular. Writing for brevity k[xi]/f = p, k[eta]/f = q, (1), we have for the general expression (S 11) of the intensity [lambda]^2f^2I^2 = S^2 + C^2 (2), where _ _ / / S = | | sin(px + qy)dx dy, (3), _/_/ _ _ / / C = | | cos(px + qy)dx dy, (4). _/_/ When, as in the application to rectangular or circular apertures, the form is symmetrical with respect to the axes both of x and y, S = 0, and C reduces to _ _ / / C = | | cos px cos qy dx dy, (5). _/_/ In the case of the circular aperture the distribution of light is of course symmetrical with respect to the focal point p = 0, q = 0; and C is a function of p and q only through [sqrt](p^2 + q^2). It is thus sufficient to determine the intensity along the axis of p. Putting q = 0, we get _ _ _+R / / / / C = | | cos px dx dy = 2 | cos px \/(R^2 - x^2) dx, _/_/ _/-R R being the radius of the aperture. This integral is the Bessel's function of order unity, defined by _[pi] z / J1(z) = ---- | cos(z cos [phi]) sin^2 [phi] d[phi] (6). [pi] _/0 Thus, if x = R cos [phi], 2J1(pR) C = [pi]^2R ------- (7); pR and the illumination at distance r from the focal point is / 2[pi]Rr \ 4J1^2( --------- ) [pi]^2R^4 \f[lambda]/ I^2 = ----------- . ----------------- (8). [lambda]^2f^2 / 2[pi]Rr \^2 ( --------- ) \f[lambda]/
PREV.   NEXT  
|<   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366  
367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   >>   >|  



Top keywords:

lambda

 

aperture

 

circular

 

function

 
intensity
 
respect
 

symmetrical

 

definition


reduces

 

distribution

 

illumination

 

distance

 

defined

 

Putting

 

determine

 

radius


Bessel

 
integral
 

sufficient

 

depends

 
criterion
 
principally
 

degree

 

secondary


considered

 

relation

 

accordance

 
pattern
 

diffraction

 

maintained

 

constant

 
expression

application

 
apertures
 

rectangular

 

general

 
Aperture
 
Circular
 

Theory

 

brevity


Writing

 

important