FREE BOOKS

Author's List




PREV.   NEXT  
|<   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348  
349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   >>   >|  
for the integral of the equation [gamma](v) = 0. Without going into further details, it is then clear enough that the resolvent equation, being irreducible and such that any solution is expressible rationally, with p parameters, in terms of the solution [omega], enables us to define a linear homogeneous group of transformations of y1 ... yn depending on p parameters; and every operation of this (continuous) group corresponds to a rational transformation of the solution of the resolvent equation. This is the group called the _rationality group_, or the _group of transformations_ of the original homogeneous linear differential equation. The group must not be confounded with a subgroup of itself, the _monodromy group_ of the equation, often called simply the group of the equation, which is a set of transformations, not depending on arbitrary variable parameters, arising for one particular fundamental set of solutions of the linear equation (see GROUPS, THEORY OF). The fundamental theorem in regard to the rationality group. The importance of the rationality group consists in three propositions. (1) Any rational function of y1, ... yn which is unaltered in value by the transformations of the group can be written in rational form. (2) If any rational function be changed in form, becoming a rational function of y1, ... yn, a transformation of the group applied to its new form will leave its value unaltered. (3) Any homogeneous linear transformation leaving unaltered the value of every rational function of y1, ... yn which has a rational value, belongs to the group. It follows from these that any group of linear homogeneous transformations having the properties (1) (2) is identical with the group in question. It is clear that with these properties the group must be of the greatest importance in attempting to discover what functions of x must be regarded as rational in order that the values of y1 ... yn may be expressed. And this is the problem of solving the equation from another point of view. LITERATURE.--([alpha]) _Formal or Transformation Theories for Equations of the First Order_:--E. Goursat, _Lecons sur l'integration des equations aux derivees partielles du premier ordre_ (Paris, 1891); E. v. Weber, _Vorlesungen uber das Pfaff'sche Problem und die Theorie der partiellen Differentialgleichungen erster Ordnung_ (Leipzig, 1900); S. Lie un
PREV.   NEXT  
|<   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348  
349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   >>   >|  



Top keywords:

rational

 

equation

 
linear
 

transformations

 
homogeneous
 

function

 

rationality

 

solution

 

transformation

 

parameters


unaltered

 
properties
 

importance

 

fundamental

 
called
 
resolvent
 
depending
 

LITERATURE

 

Goursat

 
Formal

Transformation
 

Equations

 

solving

 

integral

 
Theories
 
expressed
 

functions

 

discover

 

attempting

 

question


greatest
 

regarded

 

Lecons

 

values

 

problem

 

integration

 

Theorie

 

partiellen

 

Problem

 
Differentialgleichungen

erster

 
Ordnung
 
Leipzig
 

derivees

 

partielles

 
equations
 

identical

 
premier
 

Vorlesungen

 
irreducible