FREE BOOKS

Author's List




PREV.   NEXT  
|<   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340  
341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   >>   >|  
are assigned. In that case, putting (x - [xi]1)/(x - [xi]2) = t/(t - 1), the singular points are transformed to 0, 1, [oo], and, as is clear, without change of indices. Still denoting the independent variable by x, the equation then has the form x(1 - x)y" + y'[1 - [lambda]1 - x(1 + [lambda] + [mu])] - [lambda][mu]y = 0, which is the ordinary hypergeometric equation. Provided none of [lambda]1, [lambda]2, [lambda] - [mu] be zero or integral about x = 0, it has the solutions F([lambda], [mu], 1 - [lambda]1, x), x^[lambda]1 F([lambda] + [lambda]1, [mu] + [lambda]1, 1 + [lambda]1, x); about x = 1 it has the solutions F([lambda], [mu], 1 - [lambda]2, 1 - x), (1 - x)^[lambda]1 F([lambda] + [lambda]2, [mu] + [lambda]2, 1 + [lambda]2, 1 - x), where [lambda] + [mu] + [lambda]1 + [lambda]2 = 1; about x = [oo] it has the solutions x^-[lambda] F([lambda], [lambda] + [lambda]1, [lambda] - [mu] + 1, x^-1), x^-[mu] F([mu], [mu] + [lambda]1, [mu] - [lambda] + 1, x^-1), where F([alpha], [beta], [gamma], x) is the series [alpha][beta]x [alpha]([alpha] + 1)[beta]([beta] + 1)x^2 1 + -------------- + ----------------------------------------- ..., [gamma] 1.2.[gamma]([gamma] + 1) which converges when |x| < 1, whatever [alpha], [beta], [gamma] may be, converges for all values of x for which |x| = 1 provided the real part of [gamma] - [alpha] - [beta] < 0 algebraically, and converges for all these values except x = 1 provided the real part of [gamma] - [alpha] -[beta] > -1 algebraically. In accordance with our general theory, logarithms are to be expected in the solution when one of [lambda]1, [lambda]2, [lambda] - [mu] is zero or integral. Indeed when [lambda]1 is a negative integer, not zero, the second solution about x = 0 would contain vanishing factors in the denominators of its coefficients; in case [lambda] or [mu] be one of the positive integers 1, 2, ... (-[lambda]1), vanishing factors occur also in the numerators; and then, in fact, the second solution about x = 0 becomes x^[lambda]1 times an integral polynomial of degree (-[lambda]1) - [lambda] or of degree (-[lambda]1) - [mu]. But when [lambda]1 is a negative integer including zero, and neither [lambda] nor [mu] is one of the positive integers 1, 2 ... (-[lambda]1), the second solution about x = 0 involves a term having the factor log x. When
PREV.   NEXT  
|<   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340  
341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   >>   >|  



Top keywords:

lambda

 

solution

 
solutions
 

converges

 
integral
 

factors

 

vanishing

 

provided


algebraically

 

degree

 

positive

 
values
 

negative

 

integer

 
integers
 
equation

factor
 

Indeed

 

numerators

 
polynomial
 
coefficients
 

involves

 

including

 

denominators


series
 
indices
 

change

 

denoting

 

variable

 

independent

 
assigned
 

putting


singular

 

transformed

 

points

 

accordance

 

general

 

logarithms

 

theory

 
hypergeometric

ordinary

 
Provided
 
expected