FREE BOOKS

Author's List




PREV.   NEXT  
|<   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370  
371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   >>   >|  
t 1/57 of the brightness at the centre. +-------------------------------------------+ | z 2z^-1 J1(z) 4z^-2 J1^2(z) | +-------------------------------------------+ | | | .000000 +1.000000 1.000000 | | 5.135630 - .132279 .017498 | | 8.417236 + .064482 .004158 | | 11.619857 - .040008 .001601 | | 14.795938 + .027919 .000779 | | 17.959820 - .020905 .000437 | +-------------------------------------------+ We will now investigate the total illumination distributed over the area of the circle of radius r. We have [pi]^2R^4 4J1^2(z) I^2 = ------------- . ------- (19), [lambda]^2f^2 z^2 where z = 2[pi]Rr/[lambda]f (20). Thus _ _ _ / [lambda]^2f^2 / / 2[pi] | I^2rdr = ------------- | I^2zdz = [pi]R^2.2 | z^-1 J1^2(z)dz. _/ 2[pi]R^2 _/ _/ Now by (17), (18) z^-1 J1(z) = J0(z) - J1'(z); so that d d z^-1J1^2(z) = 1/2 -- J0^2 - 1/2 -- J1^2(z), dz dz and _z / 2 | z^-1 J1^2(z)dz = 1 - J0^2(z) - J1^2(z) (21). _/0 If r, or z, be infinite, J0(z), J1(z) vanish, and the whole illumination is expressed by [pi]R^2, in accordance with the general principle. In any case the proportion of the whole illumination to be found outside the circle of radius r is given by J0^2(z) + J1^2(z). For the dark rings J1(z) = 0; so that the fraction of illumination outside any dark ring is simply J0^2(z). Thus for the first, second, third and fourth dark rings we get respectively .161, .090, .062, .047, showing that more than 9/10ths of the whole light is concentrated within the area of the second dark ring (_Phil. Mag._, 1881). When z is great, the descending series (10) gives 2J1(z) 2 / / 2 \ ------ = - / ( ----- ) sin(z - 1/4[pi]) (22); z z \/ \[pi]z/ so that the places of maxima and minima occur at equal intervals. The mean brightness varies as z^-3 (or as r^-3), and the integral found by multiplying it by zdz and integrating between 0 and
PREV.   NEXT  
|<   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370  
371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   >>   >|  



Top keywords:

illumination

 

lambda

 

000000

 

circle

 
brightness
 
radius
 

showing

 

fraction

 

simply


fourth

 

intervals

 

maxima

 

minima

 

varies

 

integrating

 

integral

 

multiplying

 
places

concentrated

 

descending

 
series
 
417236
 

distributed

 

064482

 

132279

 

017498

 

investigate


001601
 

040008

 

619857

 

795938

 
027919
 

000437

 
020905
 

959820

 

000779


expressed
 
vanish
 

infinite

 

accordance

 

004158

 

proportion

 

principle

 

general

 

135630


centre