FREE BOOKS

Author's List




PREV.   NEXT  
|<   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173  
174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   >>   >|  
arely used in Europe. But it is so commonly used in America as to be regarded as a distinctive American feature. With pin connexions some weight is saved in the girders, and erection is a little easier. In early pin bridges insufficient bearing area was allowed between the pins and parts connected, and they worked loose. In some cases riveted covers had to be substituted for the pins. The proportions are now better understood. Nevertheless the tendency is to use riveted connexions in preference to pins, and in any case to use pins for tension members only. On the first English railways cast iron girder bridges for spans of 20 to 66 ft. were used, and in some cases these were trussed with wrought iron. When in 1845 the plans for carrying the Chester and Holyhead railway over the Menai Straits were considered, the conditions imposed by the admiralty in the interests of navigation involved the adoption of a new type of bridge. There was an idea of using suspension chains combined with a girder, and in fact the tower piers were built so as to accommodate chains. But the theory of such a combined structure could not be formulated at that time, and it was proved, partly by experiment, that a simple tubular girder of wrought iron was strong enough to carry the railway. The Britannia bridge (fig. 16) has two spans of 460 and two of 230 ft. at 104 ft. above high water. It consists of a pair of tubular girders with solid or plate sides stiffened by angle irons, one line of rails passing through each tube. Each girder is 1511 ft. long and weighs 4680 tons. In cross section (fig. 17), it is 15 ft. wide and varies in depth from 23 ft. at the ends to 30 ft. at the centre. Partly to counteract any tendency to buckling under compression and partly for convenience in assembling a great mass of plates, the top and bottom were made cellular, the cells being just large enough to permit passage for painting. The total area of the cellular top flange of the large-span girders is 648 sq. in., and of the bottom 585 sq. in. As no scaffolding could be used for the centre spans, the girders were built on shore, floated out and raised by hydraulic presses. The credit for the success of the Conway and Britannia bridges must be divided between the engineers. Robert Stephenson and William Fairbairn, and Eaton Hodgkinson, who assisted in the experimental tests and in formulating the imperfect theory then available. The Conway bridge was first completed
PREV.   NEXT  
|<   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173  
174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   >>   >|  



Top keywords:

girder

 
girders
 

bridges

 

bridge

 

partly

 

tubular

 
cellular
 
tendency
 

bottom

 

Conway


chains

 

combined

 

Britannia

 

wrought

 

railway

 
centre
 

theory

 
riveted
 

connexions

 

regarded


varies

 

Partly

 

plates

 
America
 

assembling

 

convenience

 

counteract

 

buckling

 
compression
 

section


passing

 

stiffened

 
commonly
 

weighs

 

Robert

 

Stephenson

 
William
 
Fairbairn
 

engineers

 

divided


credit
 

success

 

Hodgkinson

 

imperfect

 

completed

 

formulating

 

assisted

 
experimental
 

presses

 
hydraulic