FREE BOOKS

Author's List




PREV.   NEXT  
|<   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201  
202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   >>   >|  
-----+----------+-----------------------------+ | Ratio | 1+[rho] |Values of f, tons per sq. in.| | [rho] | ------- +-----------------------------+ | | 1+2[rho] | Iron. | Mild Steel.| ----------------------+-------+----------+----------------+------------+ All dead load | 0 | 1.00 | 7.5 | 9.0 | | .25 | 0.83 | 6.2 | 7.5 | | .33 | 0.78 | 5.8 | 7.0 | | .50 | 0.75 | 5.6 | 6.8 | | .66 | 0.71 | 5.3 | 6.4 | Live load = Dead load | 1.00 | 0.66 | 4.9 | 5.9 | | 2.00 | 0.60 | 4.5 | 5.4 | | 4.00 | 0.56 | 4.2 | 5.0 | All live load | [inf] | 0.50 | 3.7 | 4.5 | ----------------------+-------+----------+----------------+------------+ Bridge sections designed by this rule differ little from those designed by formulae based directly on Woehler's experiments. This rule has been revived in America, and appears to be increasingly relied on in bridge-designing. (See _Trans. Am. Soc. C.E._ xli. p. 156.) The method of J.J. Weyrauch and W. Launhardt, based on an empirical expression for Woehler's law, has been much used in bridge designing (see _Proc. Inst. C.E._ lxiii. p. 275). Let t be the _statical breaking strength_ of a bar, loaded once gradually up to fracture (t = breaking load divided by original area of section); u the breaking strength of a bar loaded and unloaded an indefinitely great number of times, the stress varying from u to 0 alternately (this is termed the _primitive strength_); and, lastly, let s be the breaking strength of a bar subjected to an indefinitely great number of repetitions of stresses equal and opposite in sign (tension and thrust), so that the stress ranges alternately from s to -s. This is termed the _vibration strength_. Woehler's and Bauschinger's experiments give values of t, u, and s, for some materials. If a bar is subjected to alternations of stress having the range [Delta] = f_{max.}-f_{min.}, then, by Woehler's law, the bar will ultimately break, if f_{max.} = F[Delta], . . . (1) where F is some unknown function. Launhardt found that
PREV.   NEXT  
|<   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201  
202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   >>   >|  



Top keywords:
strength
 

Woehler

 
breaking
 

stress

 
bridge
 

loaded

 

experiments

 
designing
 

termed

 

number


Launhardt
 

indefinitely

 

alternately

 

subjected

 

designed

 
unloaded
 

ultimately

 
original
 
unknown
 

function


divided

 

fracture

 

section

 

vibration

 

Bauschinger

 

stresses

 

opposite

 

gradually

 

thrust

 

ranges


repetitions
 

alternations

 

tension

 
varying
 

materials

 

primitive

 

values

 

lastly

 
differ
 
sections

Bridge

 

Values

 
formulae
 

directly

 

expression

 

empirical

 

statical

 

Weyrauch

 

method

 

increasingly