FREE BOOKS

Author's List




PREV.   NEXT  
|<   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203  
204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   >>   >|  
sign, the two tables agree very well. In bridge work this occurs only in some of the bracing bars. It is a matter of discussion whether, if fatigue is allowed for by the Weyrauch method, an additional allowance should be made for impact. There was no impact in Woehler's experiments, and therefore it would seem rational to add the impact allowance to that for fatigue; but in that case the bridge sections become larger than experience shows to be necessary. Some engineers escape this difficulty by asserting that Woehler's results are not applicable to bridge work. They reject the allowance for fatigue (that is, the effect of repetition) and design bridge members for the total dead and live load, plus a large allowance for impact varied according to some purely empirical rule. (See Waddell, _De Pontibus_, p.7.) Now in applying Woehler's law, f_{max.} for any bridge member is found for the maximum possible live load, a live load which though it may sometimes come on the bridge and must therefore be provided for, is not the usual live load to which the bridge is subjected. Hence the range of stress, f_{max.}-f_{min.}, from which the working stress is deduced, is not the ordinary range of stress which is repeated a practically infinite number of times, but is a range of stress to which the bridge is subjected only at comparatively long intervals. Hence practically it appears probable that the allowance for fatigue made in either of the tables above is sufficient to cover the ordinary effects of impact also. English bridge-builders are somewhat hampered in adopting rational limits of working stress by the rules of the Board of Trade. Nor do they all accept the guidance of Woehler's law. The following are some examples of limits adopted. For the Dufferin bridge (steel) the working stress was taken at 6.5 tons per sq. in. in bottom booms and diagonals, 6.0 tons in top booms, 5.0 tons in verticals and long compression members. For the Stanley bridge at Brisbane the limits were 6.5 tons per sq. in. in compression boom, 7.0 tons in tension boom, 5.0 tons in vertical struts, 6.5 tons in diagonal ties, 8.0 tons in wind bracing, and 6.5 tons in cross and rail girders. In the new Tay bridge the limit of stress is generally 5 tons per sq. in., but in members in which the stress changes sign 4 tons per sq. in. In the Forth bridge for members in which the stress varied from 0 to a maximum frequently, the limit was 5.0 tons per sq. in.,
PREV.   NEXT  
|<   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203  
204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   >>   >|  



Top keywords:
bridge
 

stress

 
impact
 

allowance

 
members
 

Woehler

 

fatigue

 
limits
 

working

 

compression


maximum
 

ordinary

 

subjected

 

varied

 

practically

 
tables
 

rational

 
bracing
 
guidance
 

examples


adopted

 

accept

 

sufficient

 

probable

 

appears

 

comparatively

 

intervals

 

effects

 

hampered

 

adopting


builders
 

English

 

occurs

 
struts
 

diagonal

 

girders

 

frequently

 

generally

 
vertical
 
tension

bottom

 

matter

 
diagonals
 

Brisbane

 

Stanley

 

verticals

 

Dufferin

 

number

 

design

 

effect