FREE BOOKS

Author's List




PREV.   NEXT  
|<   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198  
199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   >>   >|  
ally in many localities, and that occasionally higher pressures are recorded in exposed positions. Thus at Bidstone, Liverpool, where the gauge has an exceptional exposure, a pressure of 80 lb per sq. ft. has been observed. In tornadoes, such as that at St Louis in 1896, it has been calculated, from the stability of structures overturned, that pressures of 45 to 90 lb per sq. ft. must have been reached. As to anemometer pressures, it should be observed that the recorded pressure is made up of a positive front and negative (vacuum) back pressure, but in structures the latter must be absent or only partially developed. Great difference of opinion exists as to whether on large surfaces the average pressure per sq. ft. is as great as on small surfaces, such as anemometer plates. The experiments of Sir B. Baker at the Forth bridge showed that on a surface 30 ft. x 15 ft. the intensity of pressure was less than on a similarly exposed anemometer plate. In the case of bridges there is the further difficulty that some surfaces partially [v.04 p.0549] shield other surfaces; one girder, for instance, shields the girder behind it (see _Brit. Assoc. Report_, 1884). In 1881 a committee of the Board of Trade decided that the maximum wind pressure on a vertical surface in Great Britain should be assumed in designing structures to be 56 lb per sq. ft. For a plate girder bridge of less height than the train, the wind is to be taken to act on a surface equal to the projected area of one girder and the exposed part of a train covering the bridge. In the case of braced girder bridges, the wind pressure is taken as acting on a continuous surface extending from the rails to the top of the carriages, plus the vertical projected area of so much of one girder as is exposed above the train or below the rails. In addition, an allowance is made for pressure on the leeward girder according to a scale. The committee recommended that a factor of safety of 4 should be taken for wind stresses. For safety against overturning they considered a factor of 2 sufficient. In the case of bridges not subject to Board of Trade inspection, the allowance for wind pressure varies in different cases. C. Shaler Smith allows 300 lb per ft. run for the pressure on the side of a train, and in addition 30 lb per sq. ft. on twice the vertical projected area of one girder, treating the pressure on the train as a travelling load. In the case of bridges of less than 50 ft. span h
PREV.   NEXT  
|<   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198  
199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   >>   >|  



Top keywords:
pressure
 

girder

 
surfaces
 

surface

 
bridges
 

exposed

 

structures

 
anemometer
 

projected

 

bridge


pressures
 

vertical

 

factor

 

safety

 

allowance

 
partially
 

addition

 
committee
 
observed
 

recorded


extending

 

braced

 

covering

 

acting

 

Report

 

continuous

 

designing

 

Britain

 

height

 

maximum


decided
 

assumed

 

Shaler

 
inspection
 

varies

 

travelling

 

treating

 

subject

 
leeward
 
carriages

recommended

 

considered

 
sufficient
 

overturning

 

stresses

 

intensity

 

reached

 

overturned

 

calculated

 

stability