FREE BOOKS

Author's List




PREV.   NEXT  
|<   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202  
203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   >>   >|  
, for stresses always of the same kind, F = (t-u)/(t-f_{max.}) approximately agreed with experiment. For stresses of different kinds Weyrauch found F = (u-s)/(2u-s-f_{max.}) to be similarly approximate. Now let f_{max.}/f_{min.} = [phi], where [phi] is + or - according as the stresses are of the same or opposite signs. Putting the values of F in (1) and solving for f_{max.}, we get for the breaking stress of a bar subjected to repetition of varying stress, f_{max.} = u(1+(t-u)[phi]/u) [Stresses of same sign.] f_{max.} = u(1+(u-s)[phi]/u) [Stresses of opposite sign.] The working stress in any case is f_{max.} divided by a factor of safety. Let that factor be 3. Then Woehler's results for iron and Bauschinger's for steel give the following equations for tension or thrust:-- Iron, working stress, f = 4.4 (1+1/2[phi]) Steel, working stress, f = 5.87 (1+1/2[phi]). In these equations [phi] is to have its + or - value according to the case considered. For shearing stresses the working stress may have 0.8 of its value for tension. The following table gives values of the working stress calculated by these equations:-- _Working Stress for Tension or Thrust by Launhardt and Weyrauch Formula._ ------------------------+-------+-----------+--------------------+ | [phi] | [phi] | Working Stress f, | | | 1 + ----- | tons per sq. in. | | | 2 +--------------------+ | | | Iron. | Steel. | ------------------------+-------+-----------+--------------------+ All dead load | 1.0 | 1.5 | 6.60 | 8.80 | | 0.75 | 1.375 | 6.05 | 8.07 | | 0.50 | 1.25 | 5.50 | 7.34 | | 0.25 | 1.125 | 4.95 | 6.60 | All live load | 0.00 | 1.00 | 4.40 | 5.87 | | -0.25 | 0.875 | 3.85 | 5.14 | | -0.50 | 0.75 | 3.30 | 4.40 | | -0.75 | 0.625 | 2.75 | 3.67 | Equal stresses + and - | -1.00 | 0.500 | 2.20 | 2.93 | ------------------------+-------+-----------+--------------------+ [v.04 p.0550] To compare this with the previous table, [phi] = (A+B)/A = 1+[rho]. Except when the limiting stresses are of opposite
PREV.   NEXT  
|<   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202  
203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   >>   >|  



Top keywords:
stress
 

stresses

 
working
 

equations

 
opposite
 

Stresses

 

Stress

 
Working

factor

 

tension

 
Weyrauch
 

values

 

limiting

 

compare

 

Formula

 
Except

previous

 
Launhardt
 
Putting
 

breaking

 

solving

 

approximate

 

agreed

 

approximately


experiment

 

similarly

 

subjected

 

thrust

 

considered

 

shearing

 
Tension
 

calculated


Bauschinger

 
divided
 

varying

 

repetition

 

safety

 

results

 
Woehler
 
Thrust