FREE BOOKS

Author's List




PREV.   NEXT  
|<   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212  
213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   >>   >|  
to the jar V. which stands upon the shelf of a small pneumato-chemical apparatus GHIK, the inside of which is shown Pl. IX. Fig. 1. The second tube is applied against the outside of the vessel LMNO from 6 to 7, is continued at 8, 9, 10, and at 11 is engaged below the jar V. The former of these tubes is intended for conveying gas into the machine, and the latter for conducting small quantities for trials under jars. The gas is made either to flow into or out of the machine, according to the degree of pressure it receives; and this pressure is varied at pleasure, by loading the scale P less or more, by means of weights. When gas is to be introduced into the machine, the pressure is taken off, or even rendered negative; but, when gas is to be expelled, a pressure is made with such degree of force as is found necessary. The third tube 12, 13, 14, 15, is intended for conveying air or gas to any necessary place or apparatus for combustions, combinations, or any other experiment in which it is required. To explain the use of the fourth tube, I must enter into some discussions. Suppose the vessel LMNO, Pl. VIII. Fig. 1. full of water, and the jar A partly filled with gas, and partly with water; it is evident that the weights in the bason P may be so adjusted, as to occasion an exact equilibrium between the weight of the bason and of the jar, so that the external air shall not tend to enter into the jar, nor the gas to escape from it; and in this case the water will stand exactly at the same level both within and without the jar. On the contrary, if the weight in the bason P be diminished, the jar will then press downwards from its own gravity, and the water will stand lower within the jar than it does without; in this case, the included air or gas will suffer a degree of compression above that experienced by the external air, exactly proportioned to the weight of a column of water, equal to the difference of the external and internal surfaces of the water. From these reflections, Mr Meusnier contrived a method of determining the exact degree of pressure to which the gas contained in the jar is at any time exposed. For this purpose, he employs a double glass syphon 19, 20, 21, 22, 23, firmly cemented at 19 and 23. The extremity 19 of this syphon communicates freely with the water in the external vessel of the machine, and the extremity 23 communicates with the fourth tube at the bottom of the cylindrical vessel, and consequen
PREV.   NEXT  
|<   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212  
213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   >>   >|  



Top keywords:

pressure

 

degree

 

machine

 

vessel

 

external

 

weight

 
syphon
 

weights

 

fourth

 

intended


partly
 

extremity

 

communicates

 

conveying

 

apparatus

 

diminished

 

gravity

 

adjusted

 
occasion
 

equilibrium


escape

 
contrary
 

proportioned

 

employs

 

double

 
purpose
 

exposed

 
stands
 

bottom

 

cylindrical


consequen

 

freely

 

cemented

 

firmly

 

contained

 

determining

 

experienced

 
column
 

compression

 

included


suffer
 
difference
 

internal

 
Meusnier
 
contrived
 
method
 

reflections

 

surfaces

 

receives

 

varied