FREE BOOKS

Author's List




PREV.   NEXT  
|<   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214  
215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   >>   >|  
enience by the following contrivance. A square rod of iron, 26, 27, Pl. VIII. Fig. 1. is raised perpendicular to the middle of the beam DE. This rod passes through a hollow box of brass 28, which opens, and may be filled with lead; and this box is made to slide alongst the rod, by means of a toothed pinion playing in a rack, so as to raise or lower the box, and to fix it at such places as is judged proper. When the lever or beam DE stands horizontal, this box gravitates to neither side; but, when the jar A sinks into the cistern LMNO, so as to make the beam incline to that side, it is evident the loaded box 28, which then passes beyond the center of suspension, must gravitate to the side of the jar, and augment its pressure upon the included air. This is increased in proportion as the box is raised towards 27, because the same weight exerts a greater power in proportion to the length of the lever by which it acts. Hence, by moving the box 28 alongst the rod 26, 27, we can augment or diminish the correction it is intended to make upon the pressure of the jar; and both experience and calculation show that this may be made to compensate very exactly for the loss of weight in the jar at all degrees of pressure. I have not hitherto explained the most important part of the use of this machine, which is the manner of employing it for ascertaining the quantities of the air or gas furnished during experiments. To determine this with the most rigorous precision, and likewise the quantity supplied to the machine from experiments, we fixed to the arc which terminates the arm of the beam E, Pl. VIII. Fig. 1. the brass sector l m, divided into degrees and half degrees, which consequently moves in common with the beam; and the lowering of this end of the beam is measured by the fixed index 29, 30, which has a Nonius giving hundredth parts of a degree at its extremity 30. The whole particulars of the different parts of the above described machine are represented in Plate VIII. as follow. Fig. 2. Is the flat chain invented by Mr Vaucanson, and employed for suspending the scale or bason P, Fig. 1; but, as this lengthens or shortens according as it is more or less loaded, it would not have answered for suspending the jar A, Fig. 1. Fig. 5. Is the chain i k m, which in Fig. 1. sustains the jar A. This is entirely formed of plates of polished iron interlaced into each other, and held together by iron pins. This chain does not leng
PREV.   NEXT  
|<   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214  
215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   >>   >|  



Top keywords:

machine

 

degrees

 

pressure

 

experiments

 

loaded

 

proportion

 
weight
 

raised

 

augment

 

suspending


passes
 

alongst

 

quantity

 

hundredth

 

measured

 

giving

 

Nonius

 

precision

 
likewise
 

determine


rigorous

 
sector
 

terminates

 

divided

 

common

 
supplied
 

lowering

 
answered
 

shortens

 

plates


interlaced

 

polished

 

formed

 

sustains

 

lengthens

 

represented

 

particulars

 
extremity
 

follow

 

employed


Vaucanson
 
invented
 

degree

 
diminish
 
stands
 
horizontal
 

gravitates

 

proper

 

places

 

judged