FREE BOOKS

Author's List




PREV.   NEXT  
|<   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224  
225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   >>   >|  
n by the weight of the atmosphere, diminished by the weight of the column of mercury CE, or by 27.5 - 6 = 21.5 inches of barometrical pressure. This air is therefore less compressed than the atmosphere at the mean height of the barometer, and consequently occupies more space than it would occupy at the mean pressure, the difference being exactly proportional to the difference between the compressing weights. If, then, upon measuring the space ACD, it is found to be 120 cubical inches, it must be reduced to the volume which it would occupy under the mean pressure of 28 inches. This is done by the following statement: 120 : x, the unknown volume, :: 21.5 : 28 inversely; this gives x = 120 x 21.5 / 28 = 92.143 cubical inches. In these calculations we may either reduce the height of the mercury in the barometer, and the difference of level in the jar and bason, into lines or decimal fractions of the inch; but I prefer the latter, as it is more readily calculated. As, in these operations, which frequently recur, it is of great use to have means of abbreviation, I have given a table in the appendix for reducing lines and fractions of lines into decimal fractions of the inch. In experiments performed in the water-apparatus, we must make similar corrections to procure rigorously exact results, by taking into account, and making allowances for the difference of height of the water within the jar above the surface of the water in the cistern. But, as the pressure of the atmosphere is expressed in inches and lines of the mercurial barometer, and, as homogeneous quantities only can be calculated together, we must reduce the observed inches and lines of water into correspondent heights of the mercury. I have given a table in the appendix for this conversion, upon the supposition that mercury is 13.5681 times heavier than water. SECT. VI. _Of Corrections relative to the Degrees of the Thermometer._ In ascertaining the weight of gasses, besides reducing them to a mean of barometrical pressure, as directed in the preceding section, we must likewise reduce them to a standard thermometrical temperature; because, all elastic fluids being expanded by heat, and condensed by cold, their weight in any determinate volume is thereby liable to considerable alterations. As the temperature of 10 deg. (54.5 deg.) is a medium between the heat of summer and the cold of winter, being the temperature of subterraneous places, and that which
PREV.   NEXT  
|<   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224  
225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   >>   >|  



Top keywords:

inches

 

pressure

 

mercury

 

weight

 

difference

 

volume

 

fractions

 

reduce

 

temperature

 

barometer


height
 

atmosphere

 

barometrical

 
appendix
 
reducing
 
cubical
 

calculated

 
occupy
 

decimal

 

heavier


winter

 

conversion

 

mercurial

 

homogeneous

 

quantities

 

expressed

 

surface

 

cistern

 

heights

 

subterraneous


places
 
correspondent
 
observed
 

supposition

 

Thermometer

 

liable

 

considerable

 

thermometrical

 
elastic
 
fluids

determinate

 

expanded

 
condensed
 

standard

 
alterations
 

Degrees

 
medium
 

relative

 

Corrections

 
ascertaining