FREE BOOKS

Author's List




PREV.   NEXT  
|<   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242  
243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   >>   >|  
annot pour water upon a salt, on purpose to dissolve it, without employing a compound solvent, both water and caloric; hence we may distinguish several different cases of solution, according to the nature and mode of existence of each salt. If, for instance, a salt be difficultly soluble in water, and readily so by caloric, it evidently follows, that this salt will be difficultly soluble in cold water, and considerably in hot water; such is nitrat of potash, and more especially oxygenated muriat of potash. If another salt be little soluble both in water and caloric, the difference of its solubility in cold and warm water will be very inconsiderable; sulphat of lime is of this kind. From these considerations, it follows, that there is a necessary relation between the following circumstances; the solubility of a salt in cold water, its solubility in boiling water, and the degree of temperature at which the same salt liquifies by caloric, unassisted by water; and that the difference of solubility in hot and cold water is so much greater in proportion to its ready solution in caloric, or in proportion to its susceptibility of liquifying in a low degree of temperature. The above is a general view of solution; but, for want of particular facts, and sufficiently exact experiments, it is still nothing more than an approximation towards a particular theory. The means of compleating this part of chemical science is extremely simple; we have only to ascertain how much of each salt is dissolved by a certain quantity of water at different degrees of temperature; and as, by the experiments published by Mr de la Place and me, the quantity of caloric contained in a pound of water at each degree of the thermometer is accurately known, it will be very easy to determine, by simple experiments, the proportion of water and caloric required for solution by each salt, what quantity of caloric is absorbed by each at the moment of liquifaction, and how much is disengaged at the moment of cristallization. Hence the reason why salts are more rapidly soluble in hot than in cold water is perfectly evident. In all solutions of salts caloric is employed; when that is furnished intermediately from the surrounding bodies, it can only arrive slowly to the salt; whereas this is greatly accelerated when the requisite caloric exists ready combined with the water of solution. In general, the specific gravity of water is augmented by holding salts in solut
PREV.   NEXT  
|<   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242  
243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   >>   >|  



Top keywords:

caloric

 

solution

 

solubility

 

soluble

 

experiments

 

quantity

 

temperature

 

degree

 

proportion

 

potash


general

 

moment

 

difference

 
difficultly
 

simple

 

contained

 
required
 
absorbed
 

determine

 

thermometer


accurately

 

ascertain

 
dissolved
 

extremely

 

chemical

 

science

 

published

 

degrees

 

greatly

 

accelerated


slowly

 

arrive

 

bodies

 

requisite

 

exists

 

augmented

 

holding

 

gravity

 

specific

 

combined


surrounding

 

reason

 

disengaged

 
cristallization
 

rapidly

 

perfectly

 

furnished

 

intermediately

 
employed
 
solutions