FREE BOOKS

Author's List




PREV.   NEXT  
|<   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216  
217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   >>   >|  
ndex upon the sector is now observed, and we calculate what number of cubical inches correspond to each degree. We then fill a second and third bottle, and so on, in the same manner, with the same precautions, and even repeat the operation several times with bottles of different sizes, till at last, by accurate attention, we ascertain the exact gage or capacity of the jar A, in all its parts; but it is better to have it formed at first accurately cylindrical, by which we avoid these calculations and estimates. The instrument I have been describing was constructed with great accuracy and uncommon skill by Mr Meignie junior, engineer and physical instrument-maker. It is a most valuable instrument, from the great number of purposes to which it is applicable; and, indeed, there are many experiments which are almost impossible to be performed without it. It becomes expensive, because, in many experiments, such as the formation of water and of nitric acid, it is absolutely necessary to employ two of the same machines. In the present advanced state of chemistry, very expensive and complicated instruments are become indispensibly necessary for ascertaining the analysis and synthesis of bodies with the requisite precision as to quantity and proportion; it is certainly proper to endeavour to simplify these, and to render them less costly; but this ought by no means to be attempted at the expence of their conveniency of application, and much less of their accuracy. SECT. III. _Some other methods of measuring the volume of Gasses._ The gazometer described in the foregoing section is too costly and too complicated for being generally used in laboratories for measuring the gasses, and is not even applicable to every circumstance of this kind. In numerous series of experiments, more simple and more readily applicable methods must be employed. For this purpose I shall describe the means I used before I was in possession of a gazometer, and which I still use in preference to it in the ordinary course of my experiments. Suppose that, after an experiment, there is a residuum of gas, neither absorbable by alkali nor water, contained in the upper part of the jar AEF, Pl. IV. Fig. 3. standing on the shelf of a pneumato-chemical apparatus, of which we wish to ascertain the quantity, we must first mark the height to which the mercury or water rises in the jar with great exactness, by means of slips of paper pasted in several parts
PREV.   NEXT  
|<   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216  
217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   >>   >|  



Top keywords:

experiments

 

instrument

 

applicable

 

accuracy

 

complicated

 

costly

 
quantity
 

methods

 

measuring

 

expensive


gazometer
 

ascertain

 

number

 

volume

 

chemical

 

pneumato

 

apparatus

 

section

 
foregoing
 

standing


Gasses

 
exactness
 

render

 

endeavour

 

simplify

 
pasted
 

application

 
conveniency
 

expence

 

mercury


attempted

 

height

 

proper

 

describe

 

purpose

 

residuum

 

experiment

 
possession
 

preference

 

ordinary


Suppose
 
employed
 

contained

 
gasses
 
laboratories
 
generally
 

circumstance

 

alkali

 

absorbable

 

readily