FREE BOOKS

Author's List




PREV.   NEXT  
|<   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232  
233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   >>   >|  
e in the middle cavity is very little changed during the experiment. By any contrivance that could be devised, we could not prevent the access of the external air into the interior cavity when the atmosphere was 9 deg. or 10 deg. (52 deg. or 54 deg.) above zero. The air confined in the cavity being in that case specifically heavier than the external air, escapes downwards through the pipe x y, Fig. 3, and is replaced by the warmer external air, which, giving out its caloric to the ice, becomes heavier, and sinks in its turn; thus a current of air is formed through the machine, which is the more rapid in proportion as the external air exceeds the internal in temperature. This current of warm air must melt a part of the ice, and injure the accuracy of the experiment: We may, in a great degree, guard against this source of error by keeping the stop-cock u continually shut; but it is better to operate only when the temperature of the external air does not exceed 3 deg., or at most 4 deg., (39 deg. to 41 deg.); for we have observed, that, in this case, the melting of the interior ice by the atmospheric air is perfectly insensible; so that we may answer for the accuracy of our experiments upon the specific heat of bodies to a fortieth part. We have caused make two of the above described machines; one, which is intended for such experiments as do not require the interior air to be renewed, is precisely formed according to the description here given; the other, which answers for experiments upon combustion, respiration, &c. in which fresh quantities of air are indispensibly necessary, differs from the former in having two small tubes in the two lids, by which a current of atmospheric air may be blown into the interior cavity of the machine. It is extremely easy, with this apparatus, to determine the phenomena which occur in operations where caloric is either disengaged or absorbed. If we wish, for instance, to ascertain the quantity of caloric which is disengaged from a solid body in cooling a certain number of degrees, let its temperature be raised to 80 deg. (212 deg.); it is then placed in the interior cavity f f f f, Fig. 2. and 3. of the calorimeter, and allowed to remain till we are certain that its temperature is reduced to zero (32 deg.); the water produced by melting the ice during its cooling is collected, and carefully weighed; and this weight, divided by the volume of the body submitted to experiment, multiplie
PREV.   NEXT  
|<   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232  
233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   >>   >|  



Top keywords:

external

 

interior

 

cavity

 

temperature

 

caloric

 

current

 

experiment

 

experiments

 

formed

 

machine


cooling

 

accuracy

 

melting

 
atmospheric
 

disengaged

 

heavier

 
quantities
 
answers
 

combustion

 

respiration


indispensibly

 

differs

 
remain
 

multiplie

 

intended

 

machines

 

require

 

renewed

 

reduced

 

description


produced

 

precisely

 

extremely

 

instance

 

ascertain

 

weight

 

divided

 

quantity

 

carefully

 

degrees


weighed

 

raised

 

collected

 
absorbed
 

calorimeter

 

allowed

 

number

 

apparatus

 
determine
 
operations