FREE BOOKS

Author's List




PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   >>   >|  
kept as high as possible. The process of combustion is usually complex. First, in the case of coal, close to the fire-bars complete combustion of the red hot carbon takes place, and the heat so developed distills the volatile hydrocarbons and moisture in the upper layers of the fuel. The inflammable gases ignite on or near the surface of the fuel, if there be a sufficient supply of air, and burn with a bright flame for a considerable distance around the boiler. If the layer of fuel be thin, the carbonic acid formed in the first instance passes through the fuel and mixes with the other gases. If, however, the layer of fuel be thick, and the supply of air through the bars insufficient, the carbonic acid is decomposed by the red hot coke, and twice the volume of carbonic oxide is produced, and this, making its way through the fuel, burns with a pale blue flame on the surface, the result, as far as evolution of heat is concerned, being the same as if the intermediate decomposition of carbonic acid had not taken place. This property of coal has been taken advantage of by the late Sir W. Siemens in his gas producer, where the supply of air is purposely limited, in order that neither the hydrocarbons separated by distillation, nor the carbonic oxide formed in the thick layer of fuel, may be consumed in the producer, but remain in the form of crude gas, to be utilized in his regenerative furnaces. [Illustration: THE GENERATION OF STEAM. Fig 3.] [Illustration: THE GENERATION OF STEAM. Fig 4.] [Illustration: THE GENERATION OF STEAM. Fig 5.] [Illustration: THE GENERATION OF STEAM. Fig 6.] [Illustration: THE GENERATION OF STEAM. Fig 7.] _(To be continued.)_ * * * * * [Continued from SUPPLEMENT No. 437, page 6970.] PLANETARY WHEEL-TRAINS. By Prof. C.W. MACCORD, Sc.D. II. [Illustration: PLANETARY WHEEL TRAINS. Fig. 14] It has already been shown that the rotations of all the wheels of a planetary train, relatively to the train-arm, are the same when the arm is in motion as they would be if it were fixed. Now, in Fig. 14, let A be the first and F the last wheel of an _incomplete_ train, that is, one having but one sun-wheel. As before, let these be so connected by intermediate gearing that, when T is stationary, a rotation of A through _m_ degrees shall drive F through _n_ degrees: and also as before, let T in the same time move through _a_ degrees. Then, if _m'_ rep
PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   >>   >|  



Top keywords:

Illustration

 
GENERATION
 

carbonic

 
degrees
 

supply

 

intermediate

 
formed
 

TRAINS

 

producer

 

PLANETARY


hydrocarbons

 
combustion
 

surface

 

rotations

 

boiler

 

wheels

 

planetary

 
SUPPLEMENT
 

Continued

 

continued


motion

 

complete

 

MACCORD

 

stationary

 

rotation

 
gearing
 
connected
 

distance

 
complex
 

process


incomplete
 

evolution

 

concerned

 

result

 
ignite
 

property

 

inflammable

 

decomposition

 
insufficient
 

decomposed


making

 
produced
 

volume

 

instance

 

layers

 
advantage
 

utilized

 
regenerative
 

remain

 

consumed