FREE BOOKS

Author's List




PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   >>  
positive pole; the oxide existing in solution is brought to a higher degree of oxidation, and is separated out. Its formation may be decreased or entirely prevented by the addition of readily oxidizible bodies, such as organic acids, lactose, glycerine, and preferably by an excess of oxalic acid; but only until the organic matter is transformed into carbonic acid. In this manner Classen separates other metals from manganese in order to prevent the saline solutions from being retained by the peroxide. With solutions of silver, bismuth, nickel, and cobalt, it is often practicable to prevent the separation of oxide by giving the current a greater resistance--increasing the distance between the electrodes. The proportion between the quantities of metal and of peroxide deposited is not constant, and even if we disregard the concentration of the solution, the strength of the current and secondary influences (action of nascent hydrogen) is different in acid and in alkaline solutions. In acid solutions much peroxide is formed; in alkaline liquids, little or none. The reason of the difference is that ozone is evolved principally in acid solutions, but appears in small quantities only in alkaline liquids, or under certain circumstances not at all. The quantity of peroxide deposited depends also on the temperature of the saline solution; at ordinary temperatures the author obtained more peroxide--the solution, the time, and the strength of current being equal--than from a heated liquid. The cause is that ozone is destroyed by heat and converted into ordinary oxygen. With the exception of lead and thallium the quantity of metal deposited from an acid solution is always greater than that of the peroxide. _Lead._--Luckow has shown that from acid solutions--no matter what may be the acid--lead is deposited at the anode as a mixture of anhydrous and hydrated peroxide of variable composition. Only very strongly acid solutions let all their lead fall down as peroxide; the precipitation is rapid immediately on closing the circuit, and complete separation is effected only in presence of at least 10 per cent. of free nitric acid. As the current becomes stronger with the increase of free acid, there is deposited upon the first compact layer a new stratum of loosely adhering peroxide. In presence of small quantities of other metals which are thrown down by the current in the metallic state, such as copper, mercury, etc., peroxide alo
PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   >>  



Top keywords:
peroxide
 

solutions

 

solution

 

current

 

deposited

 

quantities

 

alkaline

 
presence
 

prevent

 
saline

metals

 

ordinary

 

separation

 

quantity

 

liquids

 
strength
 

greater

 
matter
 

organic

 

adhering


exception

 
oxygen
 

thallium

 

loosely

 

converted

 

Luckow

 

metallic

 
mercury
 

obtained

 

temperatures


copper
 

author

 
mixture
 

destroyed

 

liquid

 

thrown

 

heated

 

closing

 

stronger

 

immediately


circuit

 

effected

 

complete

 
nitric
 
precipitation
 

increase

 
hydrated
 

variable

 

compact

 

stratum