FREE BOOKS

Author's List




PREV.   NEXT  
|<   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71  
72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   >>   >|  
pted. Let us suppose an ordinary collector having as many plates as there are sections in the ring, these plates being connected as usual with the entrance and exit wires of the sections. The diametrically opposite touches that are in the line, W O, are divided, and one of the halves is connected at the entrance, _c a'_ (Fig. 4), with the corresponding section, while the other communicates with the exit, _c' a_, of the neighboring section. Each of these halves is prolonged by a piece of metal bent into the form of an arc of a circle and embracing a little less than a semi-circumference. Between these prolongations there is an insulating part. In the rotary motion of the spiral, at least one of the touches is always outside of the arc comprised between the brushes, R. In order to secure a continuity of the circuit in the effective arc, W S_ o_, it is only necessary to arrange a rubber, M, in such a way as to establish a communication between the two parts of the divided touch as soon as this latter enters the arc under consideration. In order to produce a current in the direction of the arrows shown in Fig. 4, the spiral and axle must revolve from right to left. In this case the rubber, M, occupies the position shown in the same figure, the brushes embracing an arc of a little less than 180 deg.. As soon as the lower touch comes in contact with the brush, R, when the revolution is being effected from left to right, the rubber, M, establishes a communication between the two halves that have until now been isolated, and the current is no longer interrupted. The second touch during this time is at any point whatever of the arc, W N _o_, and the spirals corresponding to the latter arc outside of the circuit. In short, thanks to the rubber, M, we have an ordinary Gramme collector in that portion of the circuit comprised between the brushes, and a collector with a breakage of the circuit in the portion to the right. [Illustration: FIG. 5.] This type of machine is entirely theoretical. In the apparatus used for Prof. Pfaundler's experiments in 1870, the armature revolved with the solenoid. The core and armature were of soft iron, and the core was arranged in a manner analogous to the preceding, and remained in place under the action of its weight, and the shell, forming a complete circle, revolved with poles fixed in space. Practically, the machine that we have just described would prove inconvenient to realize, and wo
PREV.   NEXT  
|<   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71  
72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   >>   >|  



Top keywords:

circuit

 

rubber

 

brushes

 

collector

 

halves

 
current
 

portion

 

circle

 

embracing

 

communication


machine
 

comprised

 

revolved

 

armature

 

spiral

 

section

 

touches

 
ordinary
 

divided

 

sections


plates

 

connected

 

entrance

 

isolated

 

Illustration

 

Gramme

 
spirals
 
breakage
 

interrupted

 
longer

forming

 

complete

 

weight

 
action
 

inconvenient

 

realize

 

Practically

 

remained

 
preceding
 

Pfaundler


theoretical

 

apparatus

 

experiments

 

arranged

 

manner

 

analogous

 
solenoid
 
establishes
 

prolonged

 

circumference