FREE BOOKS

Author's List




PREV.   NEXT  
|<   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51  
52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   >>   >|  
applies equally well to the original arrangement of Ferguson's paradox, if we abandon the artificial distinction between "absolute" and "relative" rotations of the planet-wheels, and regard a spur-wheel, like any other, as rotating on its axis when it turns in its bearings; the action of the device shown in Fig. 18 being thus explained by saying that the wheel H turns once backward during each forward revolution of the train-arm, while F turns a little more and K a little less than once, in the same direction. In this way the classification and analysis of these combinations are made more simple and consistent, and the incongruities above pointed out are avoided; since, without regard to the kind of gearing employed or the relative positions of the axes, we have the two equations: n' - a n I. -------- = ---, for all complete trains; m' - a m n' n II. -------- = ---, for all incomplete trains. m' - a m [Illustration: PLANETARY WHEEL TRAINS. Fig. 19] As another example of the difference in the application of these formulae, let us take Watt's sun and planet wheels, Fig. 19. This device, as is well known, was employed by the illustrious inventor as a substitute for the crank, which some one had succeeded in patenting. It consists merely of two wheels A and F connected by the link T; A being keyed on the shaft of the engine and F being rigidly secured to the connecting-rod. Suppose the rod to be of infinite length, so as to remain always parallel to itself, and the two wheels to be of equal size. Then, according to Prof. Willis' analysis, we shall have-- n' - a n -s -------- = --- = -1, n' = 0, [therefore] -------- = -1, whence m' - a m m' - a -a = a - m', or m = 2a. The other view of the question is, that F turns once backward in its bearings during each forward revolution of T; whence in Eq. 2 we have-- n' n -------- = --- = -1, n' = -a, m' - a m -a [therefore] -------- -1, which gives -a = a - m', or m' = 2a, m' - a as before. It is next to be remarked, that the errors which arise from applying Eq. I. to incomplete trains may in some cases counterbalance and neutralize each other, so that the final result is correct. [Illustration: PLANETARY WHEEL TRAINS. Fig. 20] For example, take the c
PREV.   NEXT  
|<   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51  
52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   >>   >|  



Top keywords:

wheels

 
trains
 

backward

 
employed
 

analysis

 

forward

 
revolution
 

incomplete

 

regard

 

relative


TRAINS

 
planet
 

device

 

Illustration

 

bearings

 

PLANETARY

 

substitute

 
inventor
 

illustrious

 

engine


succeeded

 

rigidly

 

patenting

 

connected

 

consists

 
Willis
 
applying
 

errors

 
remarked
 

correct


result
 

counterbalance

 

neutralize

 

question

 
parallel
 

remain

 

length

 

connecting

 
Suppose
 

infinite


secured

 
equations
 

action

 

explained

 

rotating

 
Ferguson
 

paradox

 
arrangement
 

original

 

applies