FREE BOOKS

Author's List




PREV.   NEXT  
|<   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87  
88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   >>  
ne is deposited from a solution of lead containing small quantities only of free nitric acid. The lead peroxide deposited is at first light brown or dark red, and becomes constantly darker and finally taking a velvet-black. As its stratification upon the platinum is unequal, it forms beautifully colored rings. Experiments show that the quantity of peroxide deposited depends on the nature of the solution and the strength of the current. In case of very feeble currents and slight acidity, its quantity is so small that it does not need to be taken into consideration. If the lead solution is very dilute scarcely any current is observed, lead solutions _per se_ being very bad conductors of electricity. Faintly acid concentrated lead solutions give loose peroxide along with much spongy metallic lead. Free alkali decreases the separation of peroxide; feebly alkaline solutions, concentrated and dilute, yield relatively much peroxide along with metallic lead, while strongly alkaline solutions deposit no peroxide. Dried lead peroxide is so sparingly hygroscopic that it may be weighed as such; its weight remains constant upon the balance for a long time. In order to apply the peroxide for quantitative determinations, a large surface must be exposed to action. As positive electrode a platinum capsule is convenient, and a platinum disk as negative pole. The capsule shape is necessary because the peroxide when deposited in large quantities adheres only partially, and falls in part in thin loose scales. It is necessary to siphon off the nitric solution, since, like all peroxides, that of lead is not absolutely insoluble in nitric acid. The methods of Riche and May give results which are always too high, since portions of saline solution are retained by the spongy deposit and can be but very imperfectly removed by washing. This is especially the case in presence of free alkali. The author has proceeded as follows: The lead peroxide is dried in the capsule, and there is passed over it pure dry gaseous sulphurous acid in a strong current from a rather narrow delivery tube. Lead sulphate is formed with evolution of heat; it is let cool under the exsiccator, and weighed as such. Or he ignites the peroxide along with finely pulverized ammonium sulphite; the mass must have a pure white color. After the conclusion of the reaction it is ignited for about 20 minutes. The results are too high. The proportion of actual lead peroxide in
PREV.   NEXT  
|<   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87  
88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   >>  



Top keywords:

peroxide

 
solution
 
deposited
 

solutions

 
current
 
platinum
 
capsule
 

nitric

 

dilute

 

concentrated


alkaline
 

results

 

spongy

 

metallic

 
alkali
 
weighed
 

deposit

 

quantity

 

quantities

 
removed

partially
 

imperfectly

 

retained

 

washing

 
proceeded
 

author

 

presence

 
saline
 

portions

 
peroxides

absolutely
 

insoluble

 

methods

 

scales

 

siphon

 
sulphite
 

ammonium

 

pulverized

 

ignites

 
finely

minutes

 

proportion

 

actual

 

conclusion

 
reaction
 

ignited

 

exsiccator

 
strong
 

narrow

 

sulphurous