FREE BOOKS

Author's List




PREV.   NEXT  
|<   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37  
38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   >>   >|  
hich is, of course, self-evident. Now, how can the quantity of work to be got out of a given weight of water be increased without in any way improving the efficiency of the turbine? In two ways: 1. By collecting the water higher up the mountain, and by that means increasing T. 2. By placing the turbine lower down, nearer the sea, and by that means reducing _t_. Now, the sea level corresponds to the absolute zero of temperature, and the heights T and _t_ to the maximum and minimum temperatures between which the substance is working; therefore similarly, the way to increase the efficiency of a heat engine, such as a boiler, is to raise the temperature of the furnace to the utmost, and reduce the heat of the smoke to the lowest possible point. It should be noted, in addition, that it is immaterial what liquid there may be in the lake; whether water, oil, mercury, or what not, the law will equally apply, and so in a heat engine, the nature of the working substance, provided that it does not change its physical state during a cycle, does not affect the question of efficiency with which the heat being expended is so utilized. To make this matter clearer, and give it a practical bearing, I will give the symbols a numerical value, and for this purpose I will, for the sake of simplicity, suppose that the fuel used is pure carbon, such as coke or charcoal, the heat of combustion of which is 14,544 units, that the specific heat of air, and of the products of combustion at constant pressure, is 0.238, that only sufficient air is passed through the fire to supply the quantity of oxygen theoretically required for the combustion of the carbon, and that the temperature of the air is at 60 deg. Fahrenheit = 520 deg. absolute. The symbol T represents the absolute temperature of the furnace, a value which is easily calculated in the following manner: 1 lb. of carbon requires 2-2/3 lb. of oxygen to convert it into carbonic acid, and this quantity is furnished by 12.2 lb. of air, the result being 13.2 lb. of gases, heated by 14,544 units of heat due to the energy of combustion; therefore: 14,544 units T = 520 deg. + ------------------ = 5,150 deg. absolute. 13.2 lb. X 0.238 The lower temperature, _t_, we may take as that of the feed water, say at 100 deg. or 560 deg. absolute, for by means of artificial draught and sufficiently extending the heating surface, the temperature of the smoke may be
PREV.   NEXT  
|<   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37  
38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   >>   >|  



Top keywords:

temperature

 
absolute
 

combustion

 
quantity
 

carbon

 

efficiency

 
oxygen
 

substance

 

engine

 

furnace


working

 
turbine
 

purpose

 

suppose

 

numerical

 

simplicity

 

sufficient

 
pressure
 

constant

 

specific


passed

 

symbols

 

products

 

charcoal

 

represents

 
energy
 
heated
 

extending

 
heating
 

surface


sufficiently
 

draught

 

artificial

 

result

 
Fahrenheit
 

symbol

 

easily

 

required

 
supply
 

theoretically


calculated

 
carbonic
 

furnished

 

convert

 

manner

 
requires
 

nearer

 
reducing
 

placing

 

increasing